BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 4554534)

  • 1. Translational restarts: AUG reinitiation of a lac repressor fragment.
    Platt T; Weber K; Ganem D; Miller JH
    Proc Natl Acad Sci U S A; 1972 Apr; 69(4):897-901. PubMed ID: 4554534
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reinitiation of a lac repressor fragment at a codon other than AUG.
    Ganem D; Miller JH; Files JG; Platt T; Weber K
    Proc Natl Acad Sci U S A; 1973 Nov; 70(11):3165-9. PubMed ID: 4594037
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Translational reinitiation: reinitiation of lac repressor fragments at three internal sites early in the lac i gene of Escherichia coli.
    Files JG; Weber K; Miller JH
    Proc Natl Acad Sci U S A; 1974 Mar; 71(3):667-70. PubMed ID: 4595568
    [TBL] [Abstract][Full Text] [Related]  

  • 4. How lac repressor binds to DNA.
    Adler K; Beyreuther K; Fanning E; Geisler N; Gronenborn B; Klemm A; Müller-Hill B; Pfahl M; Schmitz A
    Nature; 1972 Jun; 237(5354):322-7. PubMed ID: 4557395
    [No Abstract]   [Full Text] [Related]  

  • 5. Inactivation of protein-synthesizing T-factor by N-tosyl-L-phenylalanyl chloromethane.
    Sedlácek J; Jonák J; Rychlík I
    Biochim Biophys Acta; 1971 Dec; 254(3):478-80. PubMed ID: 4944814
    [No Abstract]   [Full Text] [Related]  

  • 6. Temperature-dependent suppression of UGA and UAA codons in a temperature-sensitive mutant of Escherichia coli.
    Phillips SL; Schlessinger D; Apirion D
    Cold Spring Harb Symp Quant Biol; 1969; 34():499-503. PubMed ID: 4909518
    [No Abstract]   [Full Text] [Related]  

  • 7. Chloroquine and primaquine inhibition of rat liver cell-free polynucleotide-dependent polypeptide synthesis.
    Roskoski R; Jaskunas SR
    Biochem Pharmacol; 1972 Feb; 21(3):391-9. PubMed ID: 5014494
    [No Abstract]   [Full Text] [Related]  

  • 8. 5'-Terminal nucleotide sequence of Escherichia coli lactose repressor mRNA: features of translational initiation and reinitiation sites.
    Steege DA
    Proc Natl Acad Sci U S A; 1977 Oct; 74(10):4163-7. PubMed ID: 337294
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The nucleotide sequence of the lactose messenger ribonucleic acid transcribed from the UV5 promoter mutant of Escherichia coli.
    Maizels NM
    Proc Natl Acad Sci U S A; 1973 Dec; 70(12):3585-9. PubMed ID: 4587256
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Escherichia coli lac repressor-lac operator interaction and the influence of allosteric effectors.
    Horton N; Lewis M; Lu P
    J Mol Biol; 1997 Jan; 265(1):1-7. PubMed ID: 8995519
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genetic studies of the lac repressor. XIV. Analysis of 4000 altered Escherichia coli lac repressors reveals essential and non-essential residues, as well as "spacers" which do not require a specific sequence.
    Markiewicz P; Kleina LG; Cruz C; Ehret S; Miller JH
    J Mol Biol; 1994 Jul; 240(5):421-33. PubMed ID: 8046748
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of dominant-negative lac repressor mutations on operator specificity and protein stability.
    Betz JL; Fall MZ
    Gene; 1988 Jul; 67(2):147-58. PubMed ID: 3049253
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Isolation of amino-terminal fragment of lactose repressor necessary for DNA binding.
    Geisler N; Weber K
    Biochemistry; 1977 Mar; 16(5):938-43. PubMed ID: 321012
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Strengthening the dimerisation interface of Lac repressor increases its thermostability by 40 deg. C.
    Gerk LP; Leven O; Müller-Hill B
    J Mol Biol; 2000 Jun; 299(3):805-12. PubMed ID: 10835285
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The predicted secondary structure of the N-terminal sequence of the lac repressor and proposed models for its complexation to the lac operator.
    Patel DJ
    Biochemistry; 1975 Mar; 14(5):1057-9. PubMed ID: 1092326
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lac repressor and lac operator.
    Müller-Hill B
    Prog Biophys Mol Biol; 1975; 30(2-3):227-52. PubMed ID: 792953
    [No Abstract]   [Full Text] [Related]  

  • 17. Binding of lactose repressor to poly d(A-T) : OD AND CD melting of the complex.
    Clement R; Daune MP
    Nucleic Acids Res; 1975 Mar; 2(3):303-18. PubMed ID: 1093136
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The side-chain of the amino acid residue in position 110 of the Lac repressor influences its allosteric equilibrium.
    Müller-Hartmann H; Müller-Hill B
    J Mol Biol; 1996 Apr; 257(3):473-8. PubMed ID: 8648615
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Limited proteolytic digestion of lac repressor by trypsin. Chemical nature of the resulting trypsin-resistant core.
    Files JG; Weber K
    J Biol Chem; 1976 Jun; 251(11):3386-91. PubMed ID: 776967
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Messenger RNA conformation and ribosome selection of translational reinitiation sites in the lac repressor mRNA.
    Cone KC; Steege DA
    J Mol Biol; 1985 Dec; 186(4):725-32. PubMed ID: 2419574
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.