These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 4554896)

  • 61. Studies on lysyl transfer ribonucleic acid synthetase from Escherichia coli.
    Stern R; Peterkofsky A
    Biochemistry; 1969 Nov; 8(11):4346-54. PubMed ID: 4311030
    [No Abstract]   [Full Text] [Related]  

  • 62. A phosphorus 31 nuclear magnetic resonance study of the intermediates of the Escherichia coli succinyl coenzyme A synthetase reaction. Evidence for substrate synergism and catalytic cooperativity.
    Vogel HJ; Bridger WA
    J Biol Chem; 1982 May; 257(9):4834-42. PubMed ID: 7040388
    [No Abstract]   [Full Text] [Related]  

  • 63. Homologous methylated and nonmethylated histidine peptides in skeletal and cardiac myosins.
    Huszar G; Elzinga M
    J Biol Chem; 1972 Feb; 247(3):745-53. PubMed ID: 5058224
    [No Abstract]   [Full Text] [Related]  

  • 64. Studies on the catalytic mechanism of Escherichia coli succinic thiokinase.
    Grinnell F; Nishimura JS
    Biochemistry; 1969 Oct; 8(10):4126-30. PubMed ID: 4899583
    [No Abstract]   [Full Text] [Related]  

  • 65. The bacterial phosphoenolpyruvate-dependent phosphotransferase system. Isolation of active site peptides by reversed-phase high-performance liquid chromatography and determination of their primary structure.
    Alpert CA; Dörschug M; Saffen D; Frank R; Deutscher J; Hengstenberg W
    J Chromatogr; 1985 Jun; 326():363-71. PubMed ID: 3928666
    [TBL] [Abstract][Full Text] [Related]  

  • 66. 3-methylhistidine in actin and other muscle proteins.
    Johnson P; Harris CI; Perry SV
    Biochem J; 1967 Oct; 105(1):361-70. PubMed ID: 6056634
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Molecular weighr of Escherichia coli glutaminyl transfer ribonucleic acid synthetase, and isolation of its complex with glutamine transfer ribonucleic acid.
    Folk WR
    Biochemistry; 1971 Apr; 10(9):1728-32. PubMed ID: 4931752
    [No Abstract]   [Full Text] [Related]  

  • 68. Haloacetol phosphates. Characterization of the active site of rabbit muscle triose phosphate isomerase.
    Hartman FC
    Biochemistry; 1971 Jan; 10(1):146-54. PubMed ID: 4922541
    [No Abstract]   [Full Text] [Related]  

  • 69. Amino acid sequence of the first 65 residues of IgA myeloma protein.
    Shinoda T
    Biochem Biophys Res Commun; 1973 Jun; 52(4):1246-51. PubMed ID: 4717746
    [No Abstract]   [Full Text] [Related]  

  • 70. The kinetics of succinyl coenzyme A synthetase from Escherichia coli. A reaction with a covalent enzyme-substrate intermediate not exhibiting "ping-pong" kinetics.
    Moffet RJ; Bridger WA
    J Biol Chem; 1970 May; 245(10):2758-62. PubMed ID: 4913428
    [No Abstract]   [Full Text] [Related]  

  • 71. Succinyl phosphate and the succinyl coenzyme A synthetase reaction.
    Hildebrand JG; Spector LB
    J Biol Chem; 1969 May; 244(10):2606-13. PubMed ID: 4890228
    [No Abstract]   [Full Text] [Related]  

  • 72. Amino acid sequence around the single 3-methylhistidine residue in rabbit skeletal muscle myosin.
    Huszar G; Elzinga M
    Biochemistry; 1971 Jan; 10(2):229-36. PubMed ID: 5539225
    [No Abstract]   [Full Text] [Related]  

  • 73. The reaction of trypsin with bromoacetone.
    Beeley JG; Neurath H
    Biochemistry; 1968 Mar; 7(3):1239-51. PubMed ID: 5690563
    [No Abstract]   [Full Text] [Related]  

  • 74. The study of the active center of human ceruloplasmin by iodination.
    Vasiletz IM; Shavlovsky MM; Neifakh SA
    Eur J Biochem; 1972 Feb; 25(3):498-504. PubMed ID: 5043318
    [No Abstract]   [Full Text] [Related]  

  • 75. Amino acid composition of thioredoxin reductase from Escherichia coli B.
    Thelander L; Baldesten A
    Eur J Biochem; 1968 Apr; 4(3):420-2. PubMed ID: 4871340
    [No Abstract]   [Full Text] [Related]  

  • 76. Aspartate transcarbamylase. Amino-terminal analyses and peptide maps of the subunits.
    Hervé GL; Stark GR
    Biochemistry; 1967 Dec; 6(12):3743-7. PubMed ID: 4864857
    [No Abstract]   [Full Text] [Related]  

  • 77. A study of the role of histidine residue 46 in staphylococcal nuclease by solid phase peptide synthesis.
    Chaiken IM; Anfinsen CB
    J Biol Chem; 1970 May; 245(9):2337-41. PubMed ID: 5442274
    [No Abstract]   [Full Text] [Related]  

  • 78. Developmental changes of the primary structure and histidine methylation in rabbit skeletal muscle myosin.
    Huszar G
    Nat New Biol; 1972 Dec; 240(104):260-4. PubMed ID: 4512226
    [No Abstract]   [Full Text] [Related]  

  • 79. Phosphoenolypyruvate synthetase of Escherichia coli: molecular weight, subunit composition, and identification of phosphohistidine in phosphoenzyme intermediate.
    Narindrasorasak S; Bridger WA
    J Biol Chem; 1977 May; 252(10):3121-7. PubMed ID: 16880
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Tryptophan synthetase chain positions affected by mutations near the ends of the genetic map of trpA of Escherichia coli.
    Yanofsky C; Horn V
    J Biol Chem; 1972 Jul; 247(14):4494-8. PubMed ID: 4557844
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.