BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 45549)

  • 1. Characteristics of delta 1-pyrroline-5-carboxylate reductase from Drosophila melanogaster.
    Farmer JL; Bradshaw WS; Smith CS
    Comp Biochem Physiol B; 1979; 62(2):143-6. PubMed ID: 45549
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biosynthesis of proline in Pseudomonas aeruginosa. Properties of gamma-glutamyl phosphate reductase and 1-pyrroline-5-carboxylate reductase.
    Krishna RV; Beilstein P; Leisinger T
    Biochem J; 1979 Jul; 181(1):223-30. PubMed ID: 114173
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Purification and characterization of rat lens pyrroline-5-carboxylate reductase.
    Shiono T; Kador PF; Kinoshita JJ
    Biochim Biophys Acta; 1986 Mar; 881(1):72-8. PubMed ID: 3753884
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enzymes in ornithine-proline metabolic pathway in bovine lens.
    Shiono T; Hayasaka S; Hara S; Mizuno K; Matsuzawa T; Ishiguro I
    Jpn J Ophthalmol; 1985; 29(3):305-9. PubMed ID: 3841168
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Subcellular compartmentation in control of converging pathways for proline and arginine metabolism in Saccharomyces cerevisiae.
    Brandriss MC; Magasanik B
    J Bacteriol; 1981 Mar; 145(3):1359-64. PubMed ID: 7009582
    [TBL] [Abstract][Full Text] [Related]  

  • 6. L-Pipecolate formation in the mammalian brain. Regional distribution of delta1-pyrroline-2-carboxylate reductase activity.
    Garweg G; von Rehren D; Hintze U
    J Neurochem; 1980 Sep; 35(3):616-21. PubMed ID: 6893842
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genetic evidence for a common enzyme catalyzing the second step in the degradation of proline and hydroxyproline.
    Valle D; Goodman SI; Harris SC; Phang JM
    J Clin Invest; 1979 Nov; 64(5):1365-70. PubMed ID: 500817
    [TBL] [Abstract][Full Text] [Related]  

  • 8. delta 1-Pyrroline-5-carboxylate reductase from Baker's yeast. Purification, properties and its application in the assays of L-delta 1-pyrroline-5-carboxylate and L-ornithine in tissue.
    Matsuzawa T; Ishiguro I
    Biochim Biophys Acta; 1980 Jun; 613(2):318-23. PubMed ID: 7004492
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The distribution of pyrroline carboxylate reductase and proline oxidase in the larva of the blowfly, Aldrichina grahami.
    Tsuyama S; Higashino T; Miura K
    Experientia; 1980 Sep; 36(9):1037-8. PubMed ID: 6893438
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identity of proline dehydrogenase and delta1-pyrroline-5-carboxylic acid reductase in Clostridium sporogenes.
    Costilow RN; Cooper D
    J Bacteriol; 1978 Apr; 134(1):139-46. PubMed ID: 25881
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proline synthesis and redox regulation: differential functions of pyrroline-5-carboxylate reductase in human lymphoblastoid cell lines.
    Lorans G; Phang JM
    Biochem Biophys Res Commun; 1981 Aug; 101(3):1018-25. PubMed ID: 6946770
    [No Abstract]   [Full Text] [Related]  

  • 12. Delta 1-pyrroline-5-carboxylate dehydrogenase in the bovine ciliary body and iris.
    Shiono T; Hayasaka S; Mizuno K
    Invest Ophthalmol Vis Sci; 1987 Mar; 28(3):459-62. PubMed ID: 3557858
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Partial purification and some properties of delta1-pyrroline-5-carboxylate reductase from Escherichia coli.
    Rossi JJ; Vender J; Berg CM; Coleman WH
    J Bacteriol; 1977 Jan; 129(1):108-14. PubMed ID: 12133
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crystal structures of Delta1-piperideine-2-carboxylate/Delta1-pyrroline-2-carboxylate reductase belonging to a new family of NAD(P)H-dependent oxidoreductases: conformational change, substrate recognition, and stereochemistry of the reaction.
    Goto M; Muramatsu H; Mihara H; Kurihara T; Esaki N; Omi R; Miyahara I; Hirotsu K
    J Biol Chem; 2005 Dec; 280(49):40875-84. PubMed ID: 16192274
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pyrroline-5-carboxylate reductase in human erythrocytes.
    Yeh GC; Harris SC; Phang JM
    J Clin Invest; 1981 Apr; 67(4):1042-6. PubMed ID: 6894153
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Schistosomiasis: proline production and release by ova.
    Isseroff H; Bock K; Owczarek A; Smith KR
    J Parasitol; 1983 Apr; 69(2):285-9. PubMed ID: 6687901
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The putative malate/lactate dehydrogenase from Pseudomonas putida is an NADPH-dependent delta1-piperideine-2-carboxylate/delta1-pyrroline-2-carboxylate reductase involved in the catabolism of D-lysine and D-proline.
    Muramatsu H; Mihara H; Kakutani R; Yasuda M; Ueda M; Kurihara T; Esaki N
    J Biol Chem; 2005 Feb; 280(7):5329-35. PubMed ID: 15561717
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enzymatic properties of the purified putA protein from Salmonella typhimurium.
    Menzel R; Roth J
    J Biol Chem; 1981 Sep; 256(18):9762-6. PubMed ID: 6270101
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Purification and partial characterization of proline dehydrogenase from Clostridium sporogenes.
    Monticello DJ; Costilow RN
    Can J Microbiol; 1981 Sep; 27(9):942-8. PubMed ID: 6895480
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enzymes metabolizing ornithine-proline pathway in the bovine eye.
    Hayasaka S; Matsuzawa T; Shiono T; Mizuno K; Ishiguro I
    Exp Eye Res; 1982 Apr; 34(4):635-8. PubMed ID: 6896186
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.