These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 4554902)

  • 1. Suppression of a dicarboxylic acid transport mutant phenotype in Escherichia coli K12.
    Kay WW
    Biochim Biophys Acta; 1972 May; 264(3):522-9. PubMed ID: 4554902
    [No Abstract]   [Full Text] [Related]  

  • 2. Two mutations affecting utilization of C4-dicarboxylic acids by Escherichia coli.
    Herbert AA; Guest JR
    J Gen Microbiol; 1970 Oct; 63(2):151-62. PubMed ID: 4929473
    [No Abstract]   [Full Text] [Related]  

  • 3. The inducible transport of DI- and tricarboxylic acid anions across the membrane of Azotobacter vinelandii.
    Postma PW; van Dam K
    Biochim Biophys Acta; 1971 Dec; 249(2):515-27. PubMed ID: 5134194
    [No Abstract]   [Full Text] [Related]  

  • 4. Properties of an inducible C 4 -dicarboxylic acid transport system in Bacillus subtilis.
    Ghei OK; Kay WW
    J Bacteriol; 1973 Apr; 114(1):65-79. PubMed ID: 4633350
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genetic control of the metabolism of propionate by Escherichia coli K12.
    Kay WW
    Biochim Biophys Acta; 1972 May; 264(3):508-21. PubMed ID: 4554901
    [No Abstract]   [Full Text] [Related]  

  • 6. Energy metabolism of Phycomyces blakesleeanus. The citric acid cycle and associated amino acids.
    Gangloff EC
    Can J Microbiol; 1966 Feb; 12(1):1-4. PubMed ID: 5925648
    [No Abstract]   [Full Text] [Related]  

  • 7. Transport of succinate in Escherichia coli. I. Biochemical and genetic studies of transport in whole cells.
    Lo TC; Rayman MK; Sanwal BD
    J Biol Chem; 1972 Oct; 247(19):6323-31. PubMed ID: 4346810
    [No Abstract]   [Full Text] [Related]  

  • 8. Biochemical and genetic characteristics of the C4-dicarboxylic acids transport system of Salmonella typhimurium.
    Parada JL; Ortega MV; Carrillo-Castañeda G
    Arch Mikrobiol; 1973 Dec; 94(1):65-76. PubMed ID: 4596667
    [No Abstract]   [Full Text] [Related]  

  • 9. Intermediary metabolism in Moniliformis dubius (Acanthocephala).
    Bryant C; Nicholas WL
    Comp Biochem Physiol; 1965 Jun; 15(2):103-12. PubMed ID: 5841604
    [No Abstract]   [Full Text] [Related]  

  • 10. Effect of aliphatic amino acids and citric acid cycle compounds on early thiamine production by thiazoleless mutant of Escherichia coli.
    Nakamura M; Nakata T; Nose Y
    J Vitaminol (Kyoto); 1968 Sep; 14(3):211-8. PubMed ID: 4884610
    [No Abstract]   [Full Text] [Related]  

  • 11. Regulation of C4-dicarboxylic acid transport in Bacillus subtilis.
    Ghei OK; Kay WW
    Can J Microbiol; 1975 Apr; 21(4):527-36. PubMed ID: 804342
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanism of formation of oxaloacetate and phosphoenol pyruvate from pyruvate.
    Wood HG
    J Vitaminol (Kyoto); 1968 Mar; 14():Suppl:59-67. PubMed ID: 4877190
    [No Abstract]   [Full Text] [Related]  

  • 13. Transport of dicarboxylic acids in Bacillus subtilis. Inducible uptake of L-malate.
    Fournier RE; McKillen MN; Pardee AB; Willecke K
    J Biol Chem; 1972 Sep; 247(17):5587-95. PubMed ID: 4626722
    [No Abstract]   [Full Text] [Related]  

  • 14. Relationship between the growth rate of mycobacteria and their ability to utilize organic acids as the sole source of carbon.
    Tsukamura M
    Jpn J Microbiol; 1968 Dec; 12(4):534-6. PubMed ID: 4974281
    [No Abstract]   [Full Text] [Related]  

  • 15. [Comparative characteristics of the transport systems of C4-dicarboxylic acids in cultures of the genera Halobacterium and Halococcus].
    Zviagintseva IS; Tarasov AL; Plakunov VK
    Mikrobiologiia; 1984; 53(3):520-4. PubMed ID: 6748976
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CO2 fixation in the nervous system.
    Waelsch H; Cheng SC; Côté LJ; Naruse H
    Proc Natl Acad Sci U S A; 1965 Oct; 54(4):1249-53. PubMed ID: 5219830
    [No Abstract]   [Full Text] [Related]  

  • 17. Isolation of the soluble substrate recognition component of the dicarboxylate transport system of Escherichia coli.
    Lo TC; Sanwal BD
    J Biol Chem; 1975 Feb; 250(4):1600-2. PubMed ID: 803506
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Propionate metabolism. IV. Significance of carboxylation reactions during adaptation to propionate.
    Kolodziej BJ; Wegener WS; Ajl SJ
    Arch Biochem Biophys; 1968 Jan; 123(1):66-71. PubMed ID: 4865809
    [No Abstract]   [Full Text] [Related]  

  • 19. Absorption of acetate, pyruvate and certain Krebs cycle intermediates by Fasciola hepatica.
    Isseroff H; Walczak IM
    Comp Biochem Physiol B; 1971 Aug; 39(4):1017-21. PubMed ID: 5132533
    [No Abstract]   [Full Text] [Related]  

  • 20. Utilization of dicarboxylic acids by Pseudomonas aeruginosa.
    Tiwari NP; Campbell JJ
    Can J Microbiol; 1969 Sep; 15(9):1095-100. PubMed ID: 4391940
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 10.