These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 4555363)

  • 1. Heterotrophy by plankton in three lakes of different productivity.
    Monheimer RH
    Nature; 1972 Apr; 236(5348):463-4. PubMed ID: 4555363
    [No Abstract]   [Full Text] [Related]  

  • 2. Sulfate uptake as a measure of planktonic microbial production in freshwater ecosystems.
    Monheimer RH
    Can J Microbiol; 1974 Jun; 20(6):825-31. PubMed ID: 4834647
    [No Abstract]   [Full Text] [Related]  

  • 3. Sources of carbon and sulfur nutrition for consumers in three meromictic lakes of New York State.
    Fry B
    Limnol Oceanogr; 1986; 31(1):79-88. PubMed ID: 11539668
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Comparative productivity studies on 3 Mecklenburg lakes (Lake Kummerow, Teretow and Malchin)].
    Kalbe L; Schulze HA
    Z Gesamte Hyg; 1972 Mar; 18(3):197-201. PubMed ID: 5049346
    [No Abstract]   [Full Text] [Related]  

  • 5. Investigations of the biological energy balance and the biological productivity of lakes in the Soviet Union.
    Vinberg GG
    Sov J Ecol; 1972; 3(4):295-304. PubMed ID: 4668814
    [No Abstract]   [Full Text] [Related]  

  • 6. Plankton photosynthesis, extracellular release and bacterial utilization of released dissolved organic carbon (RDOC) in lakes of different trophy.
    Chróst RJ
    Acta Microbiol Pol; 1983; 32(3):275-87. PubMed ID: 6198880
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photosynthesis and uptake of strontium-85 in freshwater plankton.
    Patten BC; Iverson RL
    Nature; 1966 Jul; 211(5044):96-7. PubMed ID: 5967484
    [No Abstract]   [Full Text] [Related]  

  • 8. Estimation of bacterial production in fresh waters by the simultaneous measurement of [35S]sulphate and d-[3H]glucose uptake in the dark.
    Campbell PG; Baker JH
    Can J Microbiol; 1978 Aug; 24(8):939-46. PubMed ID: 688101
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Primary production and extracellular release by phytoplankton in some lakes of the Masurian Lake District, Poland.
    Chróst RJ; Wazyk M
    Acta Microbiol Pol; 1978; 27(1):63-71. PubMed ID: 76427
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impact of ionic aluminium on extracellular phosphatases in acidified lakes.
    Bittl T; Vrba J; Nedoma J; Kopácek J
    Environ Microbiol; 2001 Sep; 3(9):578-87. PubMed ID: 11683868
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [The number and respiratory intensity of bacterioplankton in the South Ural lakes].
    Drabkova VG
    Mikrobiologiia; 1976; 45(2):358-64. PubMed ID: 933887
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Fractionation of stable sulfur isotopes during microbiological processes in Slavyansk lakes].
    Chebotarev EN; Matrosov AG; Kudriavtseva AI; Ziakun AM; Ivanov MV
    Mikrobiologiia; 1975; 44(2):304-8. PubMed ID: 1226144
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electron-opaque microscopic fibrils in lakes: their demonstration, their biological derivation and their potential significance in the redistribution of cations.
    Leppard GG; Massalski A; Lean DR
    Protoplasma; 1977; 92(3-4):289-309. PubMed ID: 910081
    [No Abstract]   [Full Text] [Related]  

  • 14. Geochemistry. Continental margins and the sulfur cycle.
    Derry LA; Murray RW
    Science; 2004 Mar; 303(5666):1981-2. PubMed ID: 15044791
    [No Abstract]   [Full Text] [Related]  

  • 15. Effects of light, magnesium, and cyanide on accumulation of mercury by a fresh water diatom, Synedra.
    Fujita M; Takabatake E; Iwasaki K
    Bull Environ Contam Toxicol; 1976 Aug; 16(2):164-72. PubMed ID: 963320
    [No Abstract]   [Full Text] [Related]  

  • 16. [Kinetics of decomposition of selected pesticides in the water environment].
    Bogacka T
    Rocz Panstw Zakl Hig; 1982; 33(4):281-9. PubMed ID: 7170592
    [No Abstract]   [Full Text] [Related]  

  • 17. Zooplankton structure and potential food web interactions in the plankton of a subtropical chain-of-lakes.
    Havens KE
    ScientificWorldJournal; 2002 Apr; 2():926-42. PubMed ID: 12805947
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Continuous daylight in the high-Arctic summer supports high plankton respiration rates compared to those supported in the dark.
    Mesa E; Delgado-Huertas A; Carrillo-de-Albornoz P; García-Corral LS; Sanz-Martín M; Wassmann P; Reigstad M; Sejr M; Dalsgaard T; Duarte CM
    Sci Rep; 2017 Apr; 7(1):1247. PubMed ID: 28455523
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Biological plankton mass and dissolved organic substances in lake water].
    VINBERG GG; PLATOVA TP
    Biull Mosk Ova Ispyt Prir (Biol); 1951; 56(2):24-37. PubMed ID: 24541168
    [No Abstract]   [Full Text] [Related]  

  • 20. Incorporation of inorganic mercury (Hg²⁺) in pelagic food webs of ultraoligotrophic and oligotrophic lakes: the role of different plankton size fractions and species assemblages.
    Soto Cárdenas C; Diéguez MC; Ribeiro Guevara S; Marvin-DiPasquale M; Queimaliños CP
    Sci Total Environ; 2014 Oct; 494-495():65-73. PubMed ID: 25033466
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.