These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
128 related articles for article (PubMed ID: 4555422)
1. Role of modified nucleosides in transfer ribonucleic acid. Effect of removal of the modified base adjacent to 3' end of the anticodon in codon-anticodon interaction. Ghosh K; Ghosh HP J Biol Chem; 1972 Jun; 247(11):3369-75. PubMed ID: 4555422 [No Abstract] [Full Text] [Related]
2. The effect of guanylyl-5'-methylene diphosphonate on binding of aminoacyl-transfer ribonucleic acid to ribosomes. Shorey RL; Ravel JM; Shive W Arch Biochem Biophys; 1971 Sep; 146(1):110-7. PubMed ID: 4947260 [No Abstract] [Full Text] [Related]
3. Peptide chain elongation. Role of the S 1 factor in the pathway from S 3 -guanosine diphosphate complex to aminoacyl transfer ribonucleic acid-S 3 -guanosine triphosphate complex. Beaud G; Lengyel P Biochemistry; 1971 Dec; 10(26):4899-906. PubMed ID: 4944063 [No Abstract] [Full Text] [Related]
4. Coding properties of methyl-deficient phenylalanyl transfer ribonucleic acid from Escherichia coli. Stern R; Gonano F; Fleissner E; Littauer UZ Biochemistry; 1970 Jan; 9(1):10-8. PubMed ID: 4903881 [No Abstract] [Full Text] [Related]
5. Chain initiation during polypeptide synthesis in cell-free bacterial systems programmed with a plant viral messenger. The formation of N-acetylphenylalanylisoleucyl-tRNA on the messenger-ribosome complex. Verhoef NJ; Lupker JH; Cornelissen MC; Bosch L Virology; 1971 Jul; 45(1):85-90. PubMed ID: 4939455 [No Abstract] [Full Text] [Related]
6. Chain initiation during polypeptide synthesis in cell-free bacterial systems programmed with a plant viral messenger. Initiation with N-acetylated aminoacyl-tRNAs on adjacent codons. Verhoef NJ; Bosch L Virology; 1971 Jul; 45(1):75-84. PubMed ID: 4939454 [No Abstract] [Full Text] [Related]
7. Amino acylaminonucleoside inhibitors of protein synthesis. II. Effect on oligophenylalanine formation. Coutsogeorgopoulos C Biochim Biophys Acta; 1971 Jun; 240(1):137-50. PubMed ID: 4940153 [No Abstract] [Full Text] [Related]
9. Studies on the formation of transfer ribonucleic acid-ribosome complexes. IV. Effect of antibiotics on steps of bacterial protein synthesis: some new ribosomal inhibitors of translocation. Pestka S; Brot N J Biol Chem; 1971 Dec; 246(24):7715-22. PubMed ID: 4944317 [No Abstract] [Full Text] [Related]
10. Production of mitochondrial peptide-chain elongation factors in yeast deficient in mitochondrial deoxyribonucleic acid. Richter D Biochemistry; 1971 Nov; 10(24):4422-5. PubMed ID: 4946922 [No Abstract] [Full Text] [Related]
11. Inability of E. coli ribosomes to interact simultaneously with the bacterial elongation factors EF Tu and EF G. Richter D Biochem Biophys Res Commun; 1972 Mar; 46(5):1850-6. PubMed ID: 4552461 [No Abstract] [Full Text] [Related]
12. Effect of the presence of a pCpCpCpA 3'terminus in Phe-tRNA Phe yeast on the interaction with elongation factors and with the poly U-ribosome system. Thang MN; Dondon L; Thang DC; Rether B FEBS Lett; 1972 Oct; 26(1):145-50. PubMed ID: 4564655 [No Abstract] [Full Text] [Related]
13. Requirement of an Escherichia coli 50 S ribosomal protein component for effective interaction of the ribosome with T and G factors and with guanosine triphosphate. Hamel E; Koka M; Nakamoto T J Biol Chem; 1972 Feb; 247(3):805-14. PubMed ID: 4333515 [No Abstract] [Full Text] [Related]
14. Inactivation of T u factor-guanosine triphosphate recognition and ribosome-binding ability by terminal oxidation-reduction of yeast phenylalanine transfer ribonucleic acid. Ofengand J; Chen CM J Biol Chem; 1972 Apr; 247(7):2049-58. PubMed ID: 4335860 [No Abstract] [Full Text] [Related]
15. Movement of the ribosome along the messenger ribonucleic acid during protein synthesis. Gupta SL; Waterson J; Sopori ML; Weissman SM; Lengyel P Biochemistry; 1971 Nov; 10(24):4410-21. PubMed ID: 4946921 [No Abstract] [Full Text] [Related]
16. Demonstration of a guanosine triphosphate-dependent enzymatic binding of aminoacyl-ribonucleic acid to Escherichia coli ribosomes. Ravel JM Proc Natl Acad Sci U S A; 1967 Jun; 57(6):1811-6. PubMed ID: 5340636 [No Abstract] [Full Text] [Related]
17. Regulatory mechanisms and protein synthesis. X. Codon recognition on 30 S ribosomes. Pestka S; Nirenberg M J Mol Biol; 1966 Oct; 21(1):145-71. PubMed ID: 5338993 [No Abstract] [Full Text] [Related]
18. Anaerobiosis-induced changes in an isoleucyl transfer ribonucleic acid and the 50S ribosomes of Escherichia coli. Kwan CN; Apirion D; Schlessinger D Biochemistry; 1968 Jan; 7(1):427-33. PubMed ID: 4921282 [No Abstract] [Full Text] [Related]
19. Studies on the ribosomal sites involved in factors Tu and G-dependent reactions. Weissbach H; Redfield B; Yamasaki E; Davis RC; Pestka S; Brot N Arch Biochem Biophys; 1972 Mar; 149(1):110-7. PubMed ID: 4552797 [No Abstract] [Full Text] [Related]
20. The role of guanosine triphosphate hydrolysis in elongation factor Tu-promoted binding of aminoacyl transfer ribonucleic acid to ribosomes. Yokosawa H; Inoue-Yokosawa N; Arai KI; Kawakita M; Kaziro Y J Biol Chem; 1973 Jan; 248(1):375-7. PubMed ID: 4571227 [No Abstract] [Full Text] [Related] [Next] [New Search]