These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 4555500)

  • 41. Binding of some primary aromatic amines to certain rat brain particulate fractions.
    Boulton AA; Wu PH; Philips S
    Can J Biochem; 1972 Nov; 50(11):1210-8. PubMed ID: 4639294
    [No Abstract]   [Full Text] [Related]  

  • 42. The fate of biogenic monoamines in perfused rabbit lung.
    Gillis CN; Roth JA
    Br J Pharmacol; 1977 Apr; 59(4):585-90. PubMed ID: 322781
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The effect of electrical stimulation and high potassium concentrations on the efflux of (3H) gamma-aminobutyric acid from brain slices.
    Srinivasan V; Neal MJ; Mitchell JF
    J Neurochem; 1969 Aug; 16(8):1235-44. PubMed ID: 5803799
    [No Abstract]   [Full Text] [Related]  

  • 44. Developmental characteristics of phenylethanolamine and octopamine in the rat brain.
    Saavedra JM; Coyle JT; Axelrod J
    J Neurochem; 1974 Sep; 23(3):511-5. PubMed ID: 4153859
    [No Abstract]   [Full Text] [Related]  

  • 45. [3H]Imipramine is accumulated but not released from slices of the rabbit caudate and hypothalamus.
    Langer SZ; Galzin AM; Kamal LA
    J Neurochem; 1982 Feb; 38(2):305-12. PubMed ID: 7108540
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Unstimulated and amphetamine-stimulated release of endogenous noradrenaline and dopamine from rat brain in vivo.
    Philips SR; Robson AM; Boulton AA
    J Neurochem; 1982 Apr; 38(4):1106-10. PubMed ID: 7062033
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Effects of caffeine on central monoamine neurons.
    Corrodi H; Fuxe K; Jonsson G
    J Pharm Pharmacol; 1972 Feb; 24(2):155-8. PubMed ID: 4401973
    [No Abstract]   [Full Text] [Related]  

  • 48. The release in vivo of [3-H] acetylcholine from cat caudate nucleus and cerebral cortex by atropine, pentylenetetrazol, K-+ -depolarization and electrical stimulation.
    Yaksh TL; Yamamura HI
    J Neurochem; 1975 Aug; 25(2):123-30. PubMed ID: 1141909
    [No Abstract]   [Full Text] [Related]  

  • 49. Disposition of newly synthesized amines in cell bodies and terminals of central catechol aminergic neurons. I. Effect of amphetamine and thiorproperazine on the metabolism of CA in the caudate nucleus, the substantia nigra and the ventromedial nucleus of the hypothalamus.
    Javoy F; Hamon M; Glowinski J
    Eur J Pharmacol; 1970 May; 10(2):178-88. PubMed ID: 4393431
    [No Abstract]   [Full Text] [Related]  

  • 50. Uptake of tyramine into synaptic vesicles of the caudate nucleus.
    Lentzen H; Philippu A
    Naunyn Schmiedebergs Arch Pharmacol; 1977 Oct; 300(1):25-30. PubMed ID: 339111
    [No Abstract]   [Full Text] [Related]  

  • 51. Unequal accumulation of adrenergic drugs by pigmented and nonpigmented iris.
    Patil PM; Jacobowitz D
    Am J Ophthalmol; 1974 Sep; 78(3):470-7. PubMed ID: 4607327
    [No Abstract]   [Full Text] [Related]  

  • 52. A comparison of the effects of methylphenidate and amphetamine on the simultaneous release of radiolabelled dopamine and p- or m-tyramine from rat striatal slices.
    Dyck LE; Boulton AA; Jones RS
    Eur J Pharmacol; 1980 Nov; 68(1):33-40. PubMed ID: 7449832
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Reduced metabolism and turnover rates of rat brain dopamine, norepinephrine and serotonin by chronic desipramine and zimelidine treatments.
    Karoum F; Korpi ER; Linnoila M; Chuang LW; Wyatt RJ
    Eur J Pharmacol; 1984 Apr; 100(2):137-44. PubMed ID: 6234178
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Release of norepinephrine from hypothalamus and amygdala by rewarding medial forebrain bundle stimulation and amphetamine.
    Stein L; Wise CD
    J Comp Physiol Psychol; 1969 Feb; 67(2):189-98. PubMed ID: 4306672
    [No Abstract]   [Full Text] [Related]  

  • 55. Lesion of selected brain areas as a tool for the demonstration of some trace biogenic amines neural pathways.
    Juorio AV
    Gen Pharmacol; 1987; 18(1):1-5. PubMed ID: 3104130
    [No Abstract]   [Full Text] [Related]  

  • 56. Simple neuronal models to estimate turnover rate of noradrenergic transmitters in vivo.
    Costa E
    Adv Biochem Psychopharmacol; 1970; 2():169-204. PubMed ID: 4399548
    [No Abstract]   [Full Text] [Related]  

  • 57. Modification by desipramine (DMI) of the availability of norepinephrine released by reserpine in the hypothalamus of the rat in vivo.
    Sulser F; Owens ML; Strada SJ; Dingell JV
    J Pharmacol Exp Ther; 1969 Aug; 168(2):272-82. PubMed ID: 5803311
    [No Abstract]   [Full Text] [Related]  

  • 58. The release of acetylcholine from the brain: an approach to the study of the central cholinergic mechanisms.
    Pepeu G
    Prog Neurobiol; 1973; 2(3):259-88. PubMed ID: 4151733
    [No Abstract]   [Full Text] [Related]  

  • 59. 6-Aminodopamine-induced degeneration of catecholamine neurons.
    Jonsson G; Sachs C
    J Neurochem; 1973 Jul; 21(1):117-24. PubMed ID: 4720890
    [No Abstract]   [Full Text] [Related]  

  • 60. Serotonin release from brain slices by electrical stimulation: regional differences and effect of LSD.
    Chase TN; Breese GR; Kopin IJ
    Science; 1967 Sep; 157(3795):1461-3. PubMed ID: 6037863
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.