BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 4556458)

  • 21. Peptide chain elongation; indications for the binding of an amino acid polymerization factor, guanosine 5'-triphosphate--aminoacyl transfer ribonucleic acid complex to the messenger-ribosome complex.
    Skoultchi A; Ono Y; Waterson J; Lengyel P
    Biochemistry; 1970 Feb; 9(3):508-14. PubMed ID: 4906323
    [No Abstract]   [Full Text] [Related]  

  • 22. Elongation factor Tu and the aminoacyl-tRNA-EFTu-GTP complex.
    Miller DL; Weissbach H
    Methods Enzymol; 1974; 30():219-32. PubMed ID: 4604425
    [No Abstract]   [Full Text] [Related]  

  • 23. Inhibition by elongation factor EF G of aminoacyl-tRNA binding to ribosomes.
    Cabrer B; Vázquez D; Modolell J
    Proc Natl Acad Sci U S A; 1972 Mar; 69(3):733-6. PubMed ID: 4551985
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Formation of fusidic acid-G factor-GDP-ribosome complex and the relationship to the inhibition of GTP hydrolysis.
    Okura A; Kinoshita T; Tanaka N
    J Antibiot (Tokyo); 1971 Oct; 24(10):655-61. PubMed ID: 4945809
    [No Abstract]   [Full Text] [Related]  

  • 25. Conformational transitions of polypeptide chain elongation factor Tu. I. Studies with hydrophobic probes.
    Arai K; Arai T; Kawakita M; Kaziro Y
    J Biochem; 1975 May; 77(5):1095-106. PubMed ID: 1099087
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Formation and properties of the aminoacyl transfer ribonucleic acid-guanosine triphosphate-protein complex.
    Shorey RL; Ravel JM; Garner CW; Shive W
    J Biol Chem; 1969 Sep; 244(17):4555-64. PubMed ID: 4897244
    [No Abstract]   [Full Text] [Related]  

  • 27. GTP consumption of elongation factor Tu during translation of heteropolymeric mRNAs.
    Rodnina MV; Wintermeyer W
    Proc Natl Acad Sci U S A; 1995 Mar; 92(6):1945-9. PubMed ID: 7892205
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Peptide chain elongation. Role of the S 1 factor in the pathway from S 3 -guanosine diphosphate complex to aminoacyl transfer ribonucleic acid-S 3 -guanosine triphosphate complex.
    Beaud G; Lengyel P
    Biochemistry; 1971 Dec; 10(26):4899-906. PubMed ID: 4944063
    [No Abstract]   [Full Text] [Related]  

  • 29. Ribosomes cannot interact simultaneously with elongation factors EF Tu and EF G.
    Richman N; Bodley JW
    Proc Natl Acad Sci U S A; 1972 Mar; 69(3):686-9. PubMed ID: 4551984
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Elongation factor T-dependent hydrolysis of guanosine triphosphate resistant to thiostrepton.
    Ballesta JP; Vazquez D
    Proc Natl Acad Sci U S A; 1972 Oct; 69(10):3058-62. PubMed ID: 4562752
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Elongation factor T-dependent GTP hydrolysis: dissociation from aminoacyl-tRNA binding.
    Ballesta JP
    Methods Enzymol; 1974; 30():232-5. PubMed ID: 4368672
    [No Abstract]   [Full Text] [Related]  

  • 32. Demonstration of a guanosine triphosphate-dependent enzymatic binding of aminoacyl-ribonucleic acid to Escherichia coli ribosomes.
    Ravel JM
    Proc Natl Acad Sci U S A; 1967 Jun; 57(6):1811-6. PubMed ID: 5340636
    [No Abstract]   [Full Text] [Related]  

  • 33. On three complementary amino acid polymerization factors from Bacillus stearothermophilus: separation of a complex containing two of the factors, guanosine-5'-triphosphate and aminoacyl-transfer RNA.
    Skoultchi A; Ono Y; Moon HM; Lengyel P
    Proc Natl Acad Sci U S A; 1968 Jun; 60(2):675-82. PubMed ID: 5248824
    [No Abstract]   [Full Text] [Related]  

  • 34. Interaction of elongation factor Tu with 2'(3')-O-aminoacyloligonucleotides derived from the 3' terminus of aminoacyl-tRNA.
    Ringer D; Chládek S
    Proc Natl Acad Sci U S A; 1975 Aug; 72(8):2950-4. PubMed ID: 1059085
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effects of mutagenesis of Gln97 in the switch II region of Escherichia coli elongation factor Tu on its interaction with guanine nucleotides, elongation factor Ts, and aminoacyl-tRNA.
    Navratil T; Spremulli LL
    Biochemistry; 2003 Nov; 42(46):13587-95. PubMed ID: 14622005
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Elongation factor 1 from Krebs II mouse ascites cells. Interaction with guanosine nucleotides and aminoacyl-tRNA.
    Nolan RD; Grasmuk H; Högenauer G; Drews J
    Eur J Biochem; 1974 Jun; 45(2):601-9. PubMed ID: 4604426
    [No Abstract]   [Full Text] [Related]  

  • 37. Effect of methanol on the partial reactions of polypeptide chain elongation.
    Hamel E; Nakamoto T
    Biochemistry; 1972 Oct; 11(21):3933-8. PubMed ID: 4562585
    [No Abstract]   [Full Text] [Related]  

  • 38. Effect of elongation factor 2 and of adenosine diphosphate-ribosylated elongation factor 2 on translocation.
    Montanaro L; Sperti S; Testoni G; Mattioli A
    Biochem J; 1976 Apr; 156(1):15-23. PubMed ID: 182140
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Functional identity of the monomeric and multiple forms of elongation-factor 1 from Krebs-II mouse ascites-tumor cells.
    Grasmuk H; Nolan RD; Drews J
    Eur J Biochem; 1976 Aug; 67(2):421-31. PubMed ID: 964253
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The binding of tritiated elongation factors 1 and 2 to ribosomes from Krebs II mouse ascites tumor cells.
    Nolan RD; Grasmuk H; Drews J
    Eur J Biochem; 1975 Jan; 50(2):391-402. PubMed ID: 1126342
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.