These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
578 related articles for article (PubMed ID: 4557518)
21. Rapidly reversible dissociation of polysomes in Escherichia coli by n-butanol. Hori M; Kunimoto T; Suzuki J J Biochem; 1969 Nov; 66(5):705-9. PubMed ID: 4902200 [No Abstract] [Full Text] [Related]
22. Protein-deficient ribosomes in chloramphenicol-treated Escherichia coli. Young RM; Nakada D Nature; 1970 Aug; 227(5258):604-6. PubMed ID: 4913915 [No Abstract] [Full Text] [Related]
23. Properties of ribonucleoprotein particles in chloramphenicol-treated cells of Escherichia coli B. Lefkovits I; Di Girolamo M Biochim Biophys Acta; 1969 Feb; 174(2):561-5. PubMed ID: 4887377 [No Abstract] [Full Text] [Related]
24. Phase transitions in ribonucleic acid synthesis during germination of Bacillus subtilis spores. Armstrong RL; Sueoka N Proc Natl Acad Sci U S A; 1968 Jan; 59(1):153-60. PubMed ID: 4969222 [No Abstract] [Full Text] [Related]
25. Physiological role of 70S ribosomes in bacteria. Algranati ID; Gonzalez NS; Bade EG Proc Natl Acad Sci U S A; 1969 Feb; 62(2):574-80. PubMed ID: 4894332 [TBL] [Abstract][Full Text] [Related]
26. Polypeptide formation and polyribosomes in Escherichia coli treated with chloramphenicol. Cremer K; Silengo L; Schlessinger D J Bacteriol; 1974 May; 118(2):582-9. PubMed ID: 4597450 [TBL] [Abstract][Full Text] [Related]
27. Role of potassium in the regulation of polysome content and protein synthesis in Escherichia coli. Ennis HL Arch Biochem Biophys; 1971 Jan; 142(1):190-200. PubMed ID: 4925704 [No Abstract] [Full Text] [Related]
28. Origin of the protein component of chlormaphenicaol particles in Escherichia coli. Yoshida K; Osawa S J Mol Biol; 1968 May; 33(3):559-69. PubMed ID: 4882613 [No Abstract] [Full Text] [Related]
29. Polyribosme metabolism in bacteriophage T4 infected Escherichia coli. Isolation and characterization of two classes of polyribosomes. Walsh ML; Cohen PS Arch Biochem Biophys; 1974 Jun; 162(2):374-84. PubMed ID: 4601315 [No Abstract] [Full Text] [Related]
30. Flow of ribosomal precursor RNA along different structural sites during chloramphenicol treatment of E. coli. Venker P; Lindigkeit R Acta Biol Med Ger; 1970; 24(4):K 41-5. PubMed ID: 4922535 [No Abstract] [Full Text] [Related]
31. Biogenesis of 30-S subunits in exponentially growing Escherichia coli. Davis FC; Sells BH Biochim Biophys Acta; 1971 Mar; 232(2):379-87. PubMed ID: 4928715 [No Abstract] [Full Text] [Related]
32. Accumulation of 70S monoribosomes in Escherichia coli after energy source shift-down. Ruscetti FW; Jacobson LA J Bacteriol; 1972 Jul; 111(1):142-51. PubMed ID: 4591472 [TBL] [Abstract][Full Text] [Related]
33. Residual polarity and transcription-translation coupling during recovery from chloramphenicol or fusidic acid. Pastushok C; Kennell D J Bacteriol; 1974 Feb; 117(2):631-40. PubMed ID: 4359650 [TBL] [Abstract][Full Text] [Related]
35. [Synthesis of stable RNA by a stringent Escherichia coli strain during specific amino acid deprivation]. Galibert F; Eladari ME; Larsen CJ; Boiron M Eur J Biochem; 1970 Apr; 13(2):273-80. PubMed ID: 4909305 [No Abstract] [Full Text] [Related]
36. Formation of polysomes in T2-infected Escherichia coli during inhibition of protein synthesis. Hauge JG Eur J Biochem; 1968 May; 4(4):431-6. PubMed ID: 4873245 [No Abstract] [Full Text] [Related]
37. The effect of high salt concentration on fidelity of translation by Escherichia coli ribosomes. Chomczyński P; Szafrański P Acta Biochim Pol; 1971; 18(2):163-70. PubMed ID: 4939214 [No Abstract] [Full Text] [Related]
38. Action of thiamine on protein and nucleic acid metabolism. I. Synthesis of ribosomes and messenger RNA during recovery from thiamine starvation in Lactobacillus viridescens. Kersten H; Averkamp KH; Braatz W; Greif P; Kersten W; Hess B Hoppe Seylers Z Physiol Chem; 1969 Dec; 350(12):1619-34. PubMed ID: 5363658 [No Abstract] [Full Text] [Related]
39. Inhibition of bacterial growth by metal salts. The accumulation of ribonucleic acid during inhibition of Escherichia coli by cobalt chloride. Blundell MR; Wild DG Biochem J; 1969 Nov; 115(2):213-23. PubMed ID: 4907880 [TBL] [Abstract][Full Text] [Related]
40. Dissociation of Lac messenger ribonucleic acid transcription from translation during recovery from inhibition of protein synthesis. Artman M; Ennis HL J Bacteriol; 1972 May; 110(2):652-60. PubMed ID: 4553840 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]