These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 4557558)

  • 61. Isolation, identification, and characterization of a lipoate-degrading pseudomonad and of a lipoate catabolite.
    Shih JC; Wright LD; McCormick DB
    J Bacteriol; 1972 Dec; 112(3):1043-51. PubMed ID: 4565525
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Contrasting effects of a nonionic surfactant on the biotransformation of polycyclic aromatic hydrocarbons to cis-dihydrodiols by soil bacteria.
    Allen CC; Boyd DR; Hempenstall F; Larkin MJ; Sharma ND
    Appl Environ Microbiol; 1999 Mar; 65(3):1335-9. PubMed ID: 10049904
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Characterization of a novel Cr6+ reducing Pseudomonas sp. with plant growth-promoting potential.
    Rajkumar M; Nagendran R; Lee KJ; Lee WH
    Curr Microbiol; 2005 May; 50(5):266-71. PubMed ID: 15886910
    [TBL] [Abstract][Full Text] [Related]  

  • 64. New naphthalene-degrading marine Pseudomonas strains.
    García-Valdés E; Cozar E; Rotger R; Lalucat J; Ursing J
    Appl Environ Microbiol; 1988 Oct; 54(10):2478-85. PubMed ID: 3202629
    [TBL] [Abstract][Full Text] [Related]  

  • 65. [Horizontal transfer of catabolic plasmids in the process of naphthalene biodegradation in model soil systems].
    Akhmetov LI; Filonov AE; Puntus IF; Kosheleva IA; Nechaeva IA; Yonge DR; Petersen JN; Boronin AM
    Mikrobiologiia; 2008; 77(1):29-39. PubMed ID: 18365719
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Effects of the inoculant strain Pseudomonas putida KT2442 (pNF142) and of naphthalene contamination on the soil bacterial community.
    Gomes NC; Kosheleva IA; Abraham WR; Smalla K
    FEMS Microbiol Ecol; 2005 Sep; 54(1):21-33. PubMed ID: 16329969
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Fluorescent pseudomonads--a residual component in the soil microflora?
    Rovira AD; Sands DC
    J Appl Bacteriol; 1971 Mar; 34(1):253-9. PubMed ID: 4935440
    [No Abstract]   [Full Text] [Related]  

  • 68. Naphthalene degradation via salicylate and gentisate by Rhodococcus sp. strain B4.
    Grund E; Denecke B; Eichenlaub R
    Appl Environ Microbiol; 1992 Jun; 58(6):1874-7. PubMed ID: 1622263
    [TBL] [Abstract][Full Text] [Related]  

  • 69. An altered Pseudomonas diversity is recovered from soil by using nutrient-poor Pseudomonas-selective soil extract media.
    Aagot N; Nybroe O; Nielsen P; Johnsen K
    Appl Environ Microbiol; 2001 Nov; 67(11):5233-9. PubMed ID: 11679350
    [TBL] [Abstract][Full Text] [Related]  

  • 70. A pathway for biodegradation of 1-naphthoic acid by Pseudomonas maltophilia CSV89.
    Phale PS; Mahajan MC; Vaidyanathan CS
    Arch Microbiol; 1995 Jan; 163(1):42-7. PubMed ID: 7710320
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Non-exhaustive extraction techniques (NEETs) for the prediction of naphthalene mineralisation in soil.
    Patterson CJ; Semple KT; Paton GI
    FEMS Microbiol Lett; 2004 Dec; 241(2):215-20. PubMed ID: 15598535
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Effects of growth conditions and NAPL presence on transport of Pseudomonas saccharophilia P15 through porous media.
    Link A; Chen M; Powers SE; Grimberg SJ
    Water Res; 2010 May; 44(9):2793-802. PubMed ID: 20219231
    [TBL] [Abstract][Full Text] [Related]  

  • 73. The naphthalene catabolic protein NahG plays a key role in hexavalent chromium reduction in Pseudomonas brassicacearum LZ-4.
    Huang H; Tao X; Jiang Y; Khan A; Wu Q; Yu X; Wu D; Chen Y; Ling Z; Liu P; Li X
    Sci Rep; 2017 Aug; 7(1):9670. PubMed ID: 28852154
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Oxygen requirements of strains of Pseudomonas and Achromobacter.
    Clark DS; Burki T
    Can J Microbiol; 1972 Mar; 18(3):321-6. PubMed ID: 4560487
    [No Abstract]   [Full Text] [Related]  

  • 75. Differential bioavailability of soil-sorbed naphthalene to two bacterial species.
    Guerin WF; Boyd SA
    Appl Environ Microbiol; 1992 Apr; 58(4):1142-52. PubMed ID: 1599237
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Use of 13C nuclear magnetic resonance to assess fossil fuel biodegradation: fate of [1-13C]acenaphthene in creosote polycyclic aromatic compound mixtures degraded by bacteria.
    Selifonov SA; Chapman PJ; Akkerman SB; Gurst JE; Bortiatynski JM; Nanny MA; Hatcher PG
    Appl Environ Microbiol; 1998 Apr; 64(4):1447-53. PubMed ID: 9546181
    [TBL] [Abstract][Full Text] [Related]  

  • 77. [Rhizosphere bacteria Pseudomonas aureofaciens and Pseudomonas chlororaphis oxidizing naphthalene in the presence of arsenic].
    Sizova OI; Kochetkov VV; Boronin AM
    Prikl Biokhim Mikrobiol; 2010; 46(1):45-50. PubMed ID: 20198916
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Monitoring of naphthalene catabolism by bioluminescence with nah-lux transcriptional fusions.
    Burlage RS; Sayler GS; Larimer F
    J Bacteriol; 1990 Sep; 172(9):4749-57. PubMed ID: 2203729
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Biodegradation of petroleum hydrocarbons by psychrotrophic Pseudomonas strains possessing both alkane (alk) and naphthalene (nah) catabolic pathways.
    Whyte LG; Bourbonniére L; Greer CW
    Appl Environ Microbiol; 1997 Sep; 63(9):3719-23. PubMed ID: 9293024
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Production and characterization of a new bioemulsifier from Pseudomonas putida ML2.
    Bonilla M; Olivaro C; Corona M; Vazquez A; Soubes M
    J Appl Microbiol; 2005; 98(2):456-63. PubMed ID: 15659200
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.