These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 4557558)

  • 81. Use of substrate responsive-direct viable counts to visualize naphthalene degrading bacteria in a coal tar-contaminated groundwater microbial community.
    Bakermans C; Madsen EL
    J Microbiol Methods; 2000 Dec; 43(2):81-90. PubMed ID: 11121606
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Maintenance and induction of naphthalene degradation activity in Pseudomonas putida and an Alcaligenes sp. under different culture conditions.
    Guerin WF; Boyd SA
    Appl Environ Microbiol; 1995 Nov; 61(11):4061-8. PubMed ID: 8526520
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Formation of salicylic acid from naphthalene by microorganisms: Part I. Studies on isolation, characterization & growth of bacterial isolates utilizing naphthalene.
    Lonsane BK; Barua PK; Singh HD; Mathur RK; Baruah JN; Iyengar MS
    Indian J Exp Biol; 1974 Mar; 12(2):158-61. PubMed ID: 4215747
    [No Abstract]   [Full Text] [Related]  

  • 84. [The behaviour of Pseudomonas morsprunorum Wormald in rhizospheres under the special consideration of bacteriophages].
    Singhabootra N; Stille B
    Zentralbl Bakteriol Parasitenkd Infektionskr Hyg; 1971; 126(3):257-69. PubMed ID: 4329483
    [No Abstract]   [Full Text] [Related]  

  • 85. A selective isolation procedure for Pseudomonas bacteria.
    Wakisaka Y; Koizumi K
    J Antibiot (Tokyo); 1982 May; 35(5):622-8. PubMed ID: 7050064
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Pseudomonas, the dominant polycyclic aromatic hydrocarbon-degrading bacteria isolated from Antarctic soils and the role of large plasmids in horizontal gene transfer.
    Ma Y; Wang L; Shao Z
    Environ Microbiol; 2006 Mar; 8(3):455-65. PubMed ID: 16478452
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Multipurpose medium for use with Pseudomonas species.
    Rosenthal SL
    Appl Microbiol; 1973 Dec; 26(6):1013-4. PubMed ID: 4588189
    [TBL] [Abstract][Full Text] [Related]  

  • 88. The metabolism of naphthalene by soil bacteria.
    TRECCANI V; WALKER N; WILTSHIRE GH
    J Gen Microbiol; 1954 Dec; 11(3):341-8. PubMed ID: 13221754
    [No Abstract]   [Full Text] [Related]  

  • 89. Physical state of phenanthrene for utilization by bacteria.
    Wodzinski RS; Coyle JE
    Appl Microbiol; 1974 Jun; 27(6):1081-4. PubMed ID: 16349993
    [TBL] [Abstract][Full Text] [Related]  

  • 90. [The construction and monitoring of genetically marked, plasmid-containing, naphthalene-degrading strains in soil].
    Filonov AE; Akhmetov LI; Puntus IF; Esikova TZ; Gafarov AB; Izmalkova TIu; Sokolov SL; Kosheleva IA; Boronin AM
    Mikrobiologiia; 2005; 74(4):526-32. PubMed ID: 16211857
    [TBL] [Abstract][Full Text] [Related]  

  • 91. A continuous culture study of an obligately psychrophilic Pseudomonas species.
    Harder W; Veldkamp H
    Arch Mikrobiol; 1967; 59(1):123-30. PubMed ID: 4880239
    [No Abstract]   [Full Text] [Related]  

  • 92. Monitoring of accelerated naphthalene-biodegradation in a bioaugmented soil slurry.
    Piskonen R; Nyyssönen M; Rajamäki T; Itävaara M
    Biodegradation; 2005 Mar; 16(2):127-34. PubMed ID: 15730023
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Isolation of a benzoate-utilizing Pseudomonas strain from soil and production of catechol from benzoate by transpositional mutants.
    Wang CL; Takenaka S; Murakami S; Aoki K
    Microbiol Res; 2001; 156(2):151-8. PubMed ID: 11572455
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Growth of Pseudomonas fluorescens with sodium maleate as a carbon source.
    Perry JT; Edwards VH
    Appl Microbiol; 1970 Nov; 20(5):710-4. PubMed ID: 4922080
    [TBL] [Abstract][Full Text] [Related]  

  • 95. A possible spectrophotometric assay for a bacterial naphthalene oxygenase.
    Williams PA; Catterall FA
    Hoppe Seylers Z Physiol Chem; 1968 Nov; 349(11):1633-6. PubMed ID: 4317684
    [No Abstract]   [Full Text] [Related]  

  • 96. Development of a kinetic basis for bioavailability of sorbed naphthalene in soil slurries.
    Park JH; Zhao X; Voice TC
    Water Res; 2002 Mar; 36(6):1620-8. PubMed ID: 11996350
    [TBL] [Abstract][Full Text] [Related]  

  • 97. A selective medium for enumeration and recovery of Pseudomonas cepacia biotypes from soil.
    Hagedorn C; Gould WD; Bardinelli TR; Gustavson DR
    Appl Environ Microbiol; 1987 Sep; 53(9):2265-8. PubMed ID: 3674874
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Medium for the selective isolation of members of the genus Pseudomonas from natural habitats.
    Grant MA; Holt JG
    Appl Environ Microbiol; 1977 May; 33(5):1222-4. PubMed ID: 879779
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Effects of dissolved organic carbon and second substrates on the biodegradation of organic compounds at low concentrations.
    Schmidt SK; Alexander M
    Appl Environ Microbiol; 1985 Apr; 49(4):822-7. PubMed ID: 3890738
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Bibenzyl synthesis in Cannabis sativa L.
    Boddington KF; Soubeyrand E; Van Gelder K; Casaretto JA; Perrin C; Forrester TJB; Parry C; Al-Abdul-Wahid MS; Jentsch NG; Magolan J; Bozzo GG; Kimber MS; Rothstein SJ; Akhtar TA
    Plant J; 2022 Feb; 109(3):693-707. PubMed ID: 34786774
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.