These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 4557731)

  • 21. Valine accumulation by alpha-aminobutyric acid-resistant mutants of Serratia marcescens.
    Kisumi M; Komatsubara S; Chibata I
    J Bacteriol; 1971 May; 106(2):493-9. PubMed ID: 4929861
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Involvement of threonine deaminase in multivalent repression of the isoleucine-valine pathway in Saccharomyces cerevisiae.
    Bollon AP; Magee PT
    Proc Natl Acad Sci U S A; 1971 Sep; 68(9):2169-72. PubMed ID: 4943789
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Derepressed levels of the isoleucine-valine and leucine enzymes in his T 1504, a strain of Salmonella typhimurium with altered leucine transfer ribonucleic acid.
    Rizzino AA; Bresalier RS; Freundlich M
    J Bacteriol; 1974 Feb; 117(2):449-55. PubMed ID: 4359646
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Autoregulation: a role for a biosynthetic enzyme in the control of gene expression.
    Calhoun DH; Hatfield GW
    Proc Natl Acad Sci U S A; 1973 Oct; 70(10):2757-61. PubMed ID: 4583023
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of isoleucine, valine, or leucine starvation on the potential for formation of the branched-chain amino acid biosynthetic enzymes.
    Wasmuth JJ; Umbarger HE
    J Bacteriol; 1973 Nov; 116(2):548-61. PubMed ID: 4200849
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of a leu-linked mutation on the valine sensitivity of acetohydroxy acid synthase activity in Escherichia coli.
    Kline EL; Brown CS; Umbarger HE
    J Bacteriol; 1975 Feb; 121(2):491-6. PubMed ID: 1089631
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Increase in isoleucine accumulation by alpha-aminobutyric acid-resistant mutants of Serratia marcescens.
    Kisumi M; Kato J; Komatsubara S; Chibata I
    Appl Microbiol; 1971 Apr; 21(4):569-74. PubMed ID: 4930271
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A regulatory mutation in tyrosine biosynthesis.
    Gollub E; Sprinson DB
    Biochem Biophys Res Commun; 1969 May; 35(3):389-95. PubMed ID: 4892346
    [No Abstract]   [Full Text] [Related]  

  • 29. Mutants of Salmonella typhimurium with an altered leucyl-transfer ribonucleic acid synthetase.
    Alexander RR; Calvo JM; Freundlich M
    J Bacteriol; 1971 Apr; 106(1):213-20. PubMed ID: 4928008
    [TBL] [Abstract][Full Text] [Related]  

  • 30. CONTROL OF ISOLEUCINE, VALINE AND LEUCINE BIOSYNTHESIS. II. ENDPRODUCT INHIBITION BY VALINE OF ACETOHYDROXY ACID SYNTHETASE IN SALMONELLA TYPHIMURIUM.
    BAUERLE RH; FRUENDLICH M; STORMER FC; UMBARGER HE
    Biochim Biophys Acta; 1964 Oct; 92():142-9. PubMed ID: 14243762
    [No Abstract]   [Full Text] [Related]  

  • 31. [Allosteric properties of the biosynthetic L-threonine dehydratase from Azotobacter vinelandii].
    Kretovich VL; Loseva LP
    Mikrobiologiia; 1973; 42(5):772-8. PubMed ID: 4792241
    [No Abstract]   [Full Text] [Related]  

  • 32. Involvement of threonine deaminase in repression of the isoleucine-valine and leucine pathways in Saccharomyces cerevisiae.
    Bollon AP; Magee PT
    J Bacteriol; 1973 Mar; 113(3):1333-44. PubMed ID: 4570783
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Biochemical and physiological properties of methionyl-sRNA synthetase mutants of Salmonella typhimurium.
    Gross TS; Rowbury RJ
    J Gen Microbiol; 1971 Jan; 65(1):5-21. PubMed ID: 4326110
    [No Abstract]   [Full Text] [Related]  

  • 34. Isoleucine-valine requiring mutants of Salmonella typhimurium. 3. Valine-sensitive strains.
    Armstrong FB; Ishiwa H
    Genetics; 1971 Feb; 67(2):171-82. PubMed ID: 4936359
    [No Abstract]   [Full Text] [Related]  

  • 35. Genetic and metabolic control of histidase and urocanase in Salmonella typhimurium, strain 15-59.
    Brill WJ; Magasanik B
    J Biol Chem; 1969 Oct; 244(19):5392-402. PubMed ID: 4899018
    [No Abstract]   [Full Text] [Related]  

  • 36. Repression of the branched-chain amino acid biosynthetic enzymes in developing conidia and mycelia of Neurospora.
    Jobbágy AJ; Wagner RP
    Can J Biochem; 1974 Oct; 52(10):822-9. PubMed ID: 4425961
    [No Abstract]   [Full Text] [Related]  

  • 37. Induced phenotypic resistance to valine in Mycobacterium pellegrino.
    Horvath I; Szentirmai A; Zsadanyi J
    J Bacteriol; 1967 Oct; 94(4):850-4. PubMed ID: 6051357
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cooperative feedback control of barley acetohydroxyacid synthetase by leucine, isoleucine, and valine.
    Miflin BJ
    Arch Biochem Biophys; 1971 Oct; 146(2):542-50. PubMed ID: 5114918
    [No Abstract]   [Full Text] [Related]  

  • 39. [Monovalent repression caused by isoleucine, valine or leucine of the alpha-acetohydroxyacid synthetase of Bacillus cereus T].
    Raimond J
    C R Acad Hebd Seances Acad Sci D; 1972 Dec; 275(25):3029-32. PubMed ID: 4631973
    [No Abstract]   [Full Text] [Related]  

  • 40. Role of alanine-valine transaminase in Salmonella typhimurium and analysis of an avtA::Tn5 mutant.
    Berg CM; Whalen WA; Archambault LB
    J Bacteriol; 1983 Sep; 155(3):1009-14. PubMed ID: 6309735
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.