These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 4557876)

  • 1. Inactivation of amphotericin B by reducing agents: influences on growth inhibition of Candida albicans and lysis of erythrocytes.
    Weis MR; Levine HB
    Sabouraudia; 1972 Jul; 10(2):132-42. PubMed ID: 4557876
    [No Abstract]   [Full Text] [Related]  

  • 2. Influences of cellular susceptibility to amphotericin B and of post-irradiation growth conditions on inactivation of Candida albicans by ultraviolet radiation.
    Sarachek A; Pettriess RW
    Mycopathol Mycol Appl; 1974 Nov; 54(2):205-14. PubMed ID: 4612360
    [No Abstract]   [Full Text] [Related]  

  • 3. Inhibition of amphotericin B (Fungizone) toxicity to cells by egg lecithin-glycocholic acid mixed micelles.
    Brajtburg J; Elberg S; Kobayashi GS; Medoff G
    Antimicrob Agents Chemother; 1990 Dec; 34(12):2415-6. PubMed ID: 2088196
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitative determination of fluconazole-amphotericin B antagonism to Candida albicans by agar diffusion.
    Scheven M; Senf L
    Mycoses; 1994; 37(5-6):205-7. PubMed ID: 7898518
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Haloprogin: mode of action studies in Candida albicans.
    Harrison EF; Zygmunt WA
    Can J Microbiol; 1974 Sep; 20(9):1241-5. PubMed ID: 4608935
    [No Abstract]   [Full Text] [Related]  

  • 6. Inhibition by Cu2+ of amphotericin B induced lysis of erythrocytes.
    Chéron M; Bolard J; Brajtburg J
    FEBS Lett; 1984 Dec; 178(1):127-31. PubMed ID: 6094254
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Activity of amphotericin B and intraconazole against intraphagocytic Candida albicans.
    Ponce E; Pechère JC
    Eur J Clin Microbiol Infect Dis; 1990 Oct; 9(10):738-44. PubMed ID: 2175704
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The use of sodium sulfite as a neutralizer for evaluating povidone-iodine preparations.
    Green BL; Litsky W
    Health Lab Sci; 1974 Jul; 11(3):188-94. PubMed ID: 4209769
    [No Abstract]   [Full Text] [Related]  

  • 9. In vitro method to study antifungal perfusion in Candida biofilms.
    Samaranayake YH; Ye J; Yau JY; Cheung BP; Samaranayake LP
    J Clin Microbiol; 2005 Feb; 43(2):818-25. PubMed ID: 15695686
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Anti-candida activity of sodium sulfite.
    Ogasawara A; Iino Y; Sato K; Nakajima Y; Bessho S; Watanabe T; Mikami T; Matsumoto T
    Biol Pharm Bull; 2008 Jun; 31(6):1101-3. PubMed ID: 18520038
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative screening for fluconazole-amphotericin B antagonism in several Candida albicans strains by a comparative agar diffusion assay.
    Scheven M; Scheven C
    Mycoses; 1996; 39(3-4):111-4. PubMed ID: 8767003
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polysorbate Surfactants as Drug Carriers: Tween 20-Amphotericin B Conjugates as Anti-Fungal and Anti-Leishmanial Agents.
    Ravichandran V; Kesavan V; Cojean S; Loiseau PM; Jayakrishnan A
    Curr Drug Deliv; 2018; 15(7):1028-1037. PubMed ID: 29732967
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differential modulation of the antifungal activity of amphotericin B by natural and ent-cholesterol.
    Richter RK; Mickus DE; Rychnovsky SD; Molinski TF
    Bioorg Med Chem Lett; 2004 Jan; 14(1):115-8. PubMed ID: 14684310
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A new in-vitro kinetic model to study the pharmacodynamics of antifungal agents: inhibition of the fungicidal activity of amphotericin B against Candida albicans by voriconazole.
    Lignell A; Johansson A; Löwdin E; Cars O; Sjölin J
    Clin Microbiol Infect; 2007 Jun; 13(6):613-9. PubMed ID: 17378925
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Water-soluble amphotericin B-polyvinylpyrrolidone complexes with maintained antifungal activity against Candida spp. and Aspergillus spp. and reduced haemolytic and cytotoxic effects.
    Charvalos E; Tzatzarakis MN; Van Bambeke F; Tulkens PM; Tsatsakis AM; Tzanakakis GN; Mingeot-Leclercq MP
    J Antimicrob Chemother; 2006 Feb; 57(2):236-44. PubMed ID: 16361329
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of serum lipoproteins on damage to erythrocytes and Candida albicans cells by polyene antibiotics.
    Brajtburg J; Elberg S; Kobayashi GS; Medoff G
    J Infect Dis; 1986 Mar; 153(3):623-6. PubMed ID: 3512734
    [No Abstract]   [Full Text] [Related]  

  • 17. Tricyclic antidepressants inhibit Candida albicans growth and biofilm formation.
    Caldara M; Marmiroli N
    Int J Antimicrob Agents; 2018 Oct; 52(4):500-505. PubMed ID: 29990546
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [2,3-diphosphoglycerate metabolism and glycolysis in human erythrocytes. Influence of sulfate, tetrathionate and disulfite].
    Duhm J; Deuticke B; Gerlach E
    Hoppe Seylers Z Physiol Chem; 1969 Aug; 350(8):1008-16. PubMed ID: 4308904
    [No Abstract]   [Full Text] [Related]  

  • 19. Effect of amphotericin B, fluconazole and itraconazole on intracellular Candida albicans and germ tube development in macrophages.
    Van 't Wout JW; Meynaar I; Linde I; Poell R; Mattie H; Van Furth R
    J Antimicrob Chemother; 1990 May; 25(5):803-11. PubMed ID: 2165051
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vitro interaction of fluconazole and amphotericin B administered sequentially against Candida albicans: effect of concentration and exposure time.
    Ernst EJ; Klepser ME; Pfaller MA
    Diagn Microbiol Infect Dis; 1998 Nov; 32(3):205-10. PubMed ID: 9884837
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.