These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 4557876)

  • 21. Hemolytic and antifungal activity of liposome-entrapped amphotericin B prepared by the precipitation method.
    Kim JC; Lee EO; Kim JY; Bae SK; Choi TB; Kim JD
    Pharm Dev Technol; 1997 Aug; 2(3):275-84. PubMed ID: 9552455
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Development of amphotericin B liposomes bearing antibody specific to Candida albicans.
    Hospenthal DR; Rogers AL; Mills GL
    Mycopathologia; 1988 Jan; 101(1):37-45. PubMed ID: 3281020
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Synthesis and characterization of NH
    Zhang J; Ma J; Dong Y; Zhao W; Feng J
    J Antibiot (Tokyo); 2019 Apr; 72(4):210-217. PubMed ID: 30635615
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Pharmacological parameters of intravenously administered amphotericin B in rats: comparison of the conventional formulation with amphotericin B associated with a triglyceride-rich emulsion.
    Souza LC; Campa A
    J Antimicrob Chemother; 1999 Jul; 44(1):77-84. PubMed ID: 10459813
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Lysozyme-enhanced killing of Candida albicans and Coccidioides immitis by amphoteracin B.
    Collins MS; Pappagianis D
    Sabouraudia; 1974 Nov; 12(3):329-40. PubMed ID: 4610825
    [No Abstract]   [Full Text] [Related]  

  • 26. Evaluation of polyene-azole antagonism in liquid cultures of Candida albicans using an automated turbidometric method.
    Samaranayake YH; Samaranayake LP; Yeung KW
    Chemotherapy; 2001; 47(4):279-91. PubMed ID: 11399865
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Antifungal activity of amphotericin B and voriconazole against the biofilms and biofilm-dispersed cells of Candida albicans employing a newly developed in vitro pharmacokinetic model.
    El-Azizi M; Farag N; Khardori N
    Ann Clin Microbiol Antimicrob; 2015 Apr; 14():21. PubMed ID: 25885806
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Isolation and identification of sodium 2-propenyl thiosulfate from boiled garlic (Allium sativum) that oxidizes canine erythrocytes.
    Yamato O; Sugiyama Y; Matsuura H; Lee KW; Goto K; Hossain MA; Maede Y; Yoshihara T
    Biosci Biotechnol Biochem; 2003 Jul; 67(7):1594-6. PubMed ID: 12913309
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Increased in vitro sensitivity of Candida albicans to amphotericin B when grown in mixed culture with Escherichia coli.
    Mathieu LG; Dube D; Lebrun M
    Can J Microbiol; 1978 Dec; 24(12):1482-9. PubMed ID: 371767
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Studies of the effects of antifungal cationic derivatives of amphotericin B on human erythrocytes.
    Slisz M; Cybulska B; Mazerski J; Grzybowska J; Borowski E
    J Antibiot (Tokyo); 2004 Oct; 57(10):669-78. PubMed ID: 15638328
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Targeting and synergistic action of an antifungal peptide in an antibiotic drug-delivery system.
    Park SC; Kim YM; Lee JK; Kim NH; Kim EJ; Heo H; Lee MY; Lee JR; Jang MK
    J Control Release; 2017 Jun; 256():46-55. PubMed ID: 28428067
    [TBL] [Abstract][Full Text] [Related]  

  • 32. In-vitro and in-vivo studies of the decrease of amphotericin B toxicity upon association with a triglyceride-rich emulsion.
    Souza LC; Maranhão RC; Schreier S; Campa A
    J Antimicrob Chemother; 1993 Jul; 32(1):123-32. PubMed ID: 8226403
    [TBL] [Abstract][Full Text] [Related]  

  • 33. New strategy for enhancing the therapeutic index of Fungizone(®).
    Belkherroubi-Sari L; Adida H; Seghir A; Boucherit Z; Boucherit K
    J Mycol Med; 2013 Mar; 23(1):3-7. PubMed ID: 23287729
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A re-evaluation of the effect of cysteine or Candida albicans.
    Wain WH; Price MF; Cawson RA
    Sabouraudia; 1975 Mar; 13 Pt 1():74-82. PubMed ID: 1092000
    [TBL] [Abstract][Full Text] [Related]  

  • 35. In vitro activity of 2-cyclohexylidenhydrazo-4-phenyl-thiazole compared with those of amphotericin B and fluconazole against clinical isolates of Candida spp. and fluconazole-resistant Candida albicans.
    De Logu A; Saddi M; Cardia MC; Borgna R; Sanna C; Saddi B; Maccioni E
    J Antimicrob Chemother; 2005 May; 55(5):692-8. PubMed ID: 15772140
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Antifungal property of hibicuslide C and its membrane-active mechanism in Candida albicans.
    Hwang JH; Jin Q; Woo ER; Lee DG
    Biochimie; 2013 Oct; 95(10):1917-22. PubMed ID: 23816874
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Strong correlation between the antifungal effect of amphotericin B and its inhibitory action on germ-tube formation in a Candida albicans URA⁺ strain.
    Guirao-Abad JP; González-Párraga P; Argüelles JC
    Int Microbiol; 2015 Mar; 18(1):25-31. PubMed ID: 26415664
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Black and white teas as potential agents to combine with amphotericin B and protect red blood cells from amphotericin B-mediated toxicity.
    Oliveira VM; Khalil NM; Carraro E
    Braz J Biol; 2018 Nov; 78(4):673-678. PubMed ID: 29412247
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Release of amphotericin B from delivery systems and its action against fungal and mammalian cells.
    Legrand P; Chéron M; Leroy L; Bolard J
    J Drug Target; 1997; 4(5):311-9. PubMed ID: 9169988
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Evaluation of caspofungin and amphotericin B deoxycholate against Candida albicans biofilms in an experimental intravascular catheter infection model.
    Shuford JA; Rouse MS; Piper KE; Steckelberg JM; Patel R
    J Infect Dis; 2006 Sep; 194(5):710-3. PubMed ID: 16897672
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.