These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 4559730)

  • 41. Sugar transport. Properties of mutant bacteria defective in proteins of the phosphoenolpyruvate: sugar phosphotransferase system.
    Simoni RD; Roseman S; Saier MH
    J Biol Chem; 1976 Nov; 251(21):6584-97. PubMed ID: 789368
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Histidyl-transfer ribonucleic acid synthetase mutants requiring a high internal pool of histidine for growth.
    Straus DS; Ames BN
    J Bacteriol; 1973 Jul; 115(1):188-97. PubMed ID: 4352174
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Histidine regulation in Salmonella typhimurium. XV. Procedure for the selection of mutants unable to derepress the histidine operon.
    Straus DS; Wyche JH
    J Bacteriol; 1974 Jan; 117(1):116-25. PubMed ID: 4587601
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The pi-histidine factor of Salmonella typhimurium: a demonstration that pi-histidine factor integrates into the chromosome.
    Levinthal M; Yeh J
    J Bacteriol; 1972 Mar; 109(3):993-1000. PubMed ID: 4551760
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Glucose kinase-dependent catabolite repression in Staphylococcus xylosus.
    Wagner E; Marcandier S; Egeter O; Deutscher J; Götz F; Brückner R
    J Bacteriol; 1995 Nov; 177(21):6144-52. PubMed ID: 7592379
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Biosynthesis of prodigiosin by non-proliferating wild-type Serratia marcescens and mutants deficient in catabolism of alanine, histidine, and proline.
    Lim DV; Qadri SM; Nichols C; Williams RP
    J Bacteriol; 1977 Jan; 129(1):124-30. PubMed ID: 318635
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Isolation of a trans-dominant histidase-negative mutant of Salmonella typhimurium.
    Hagen DC; Lipton PJ; Magasanik B
    J Bacteriol; 1974 Nov; 120(2):906-16. PubMed ID: 4156361
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Suppression of proline requirement of proA and proAB deletion mutants in Salmonella typhimurium by mutation to arginine requirement.
    Kuo TT; Stocker BA
    J Bacteriol; 1969 May; 98(2):593-8. PubMed ID: 4891261
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Control of mixed-substrate utilization in continuous cultures of Escherichia coli.
    Silver RS; Mateles RI
    J Bacteriol; 1969 Feb; 97(2):535-43. PubMed ID: 4886282
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Evidence that the majority of leucine transfer ribonucleic acid is not involved in repression in Salmonella typhimurium.
    Freundlich M; Trela J; Peng W
    J Bacteriol; 1971 Nov; 108(2):951-3. PubMed ID: 4942773
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Biochemical studies of melibiose metabolism in wild type and mel mutant strains of Salmonella typhimurium.
    Levinthal M
    J Bacteriol; 1971 Mar; 105(3):1047-52. PubMed ID: 4926676
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Sugar transport. The crr mutation: its effect on repression of enzyme synthesis.
    Saier MH; Roseman S
    J Biol Chem; 1976 Nov; 251(21):6598-605. PubMed ID: 789369
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Sequential repression and derepression of the enzymes for histidine biosynthesis in Salmonella typhimurium.
    Goldberger RF; Berberich MA
    Proc Natl Acad Sci U S A; 1965 Jul; 54(1):279-86. PubMed ID: 5323020
    [No Abstract]   [Full Text] [Related]  

  • 54. Expression of the putA gene encoding proline dehydrogenase from Rhodobacter capsulatus is independent of NtrC regulation but requires an Lrp-like activator protein.
    Keuntje B; Masepohl B; Klipp W
    J Bacteriol; 1995 Nov; 177(22):6432-9. PubMed ID: 7592417
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Loss of protein kinase-catalyzed phosphorylation of HPr, a phosphocarrier protein of the phosphotransferase system, by mutation of the ptsH gene confers catabolite repression resistance to several catabolic genes of Bacillus subtilis.
    Deutscher J; Reizer J; Fischer C; Galinier A; Saier MH; Steinmetz M
    J Bacteriol; 1994 Jun; 176(11):3336-44. PubMed ID: 8195089
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Regulation of two phosphatases and a cyclic phosphodiesterase of Salmonella typhimurium.
    Kier LD; Weppelman R; Ames BN
    J Bacteriol; 1977 Apr; 130(1):420-8. PubMed ID: 192713
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Gene expression after transformation of Bacillus subtilis.
    Chasin LA; Magasanik B
    J Bacteriol; 1970 Jun; 102(3):661-5. PubMed ID: 4988038
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The functional organization of the tryptophan gene cluster in Salmonella typhimurium.
    Bauerle RH; Margolin P
    Proc Natl Acad Sci U S A; 1966 Jul; 56(1):111-8. PubMed ID: 5338585
    [No Abstract]   [Full Text] [Related]  

  • 59. Biodegradative L-threonine deaminase of Salmonella typhimurium.
    Luginbuhl GH; Hofler JG; Decedue CJ; Burns RO
    J Bacteriol; 1974 Oct; 120(1):559-61. PubMed ID: 4370904
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Formation and operation of the histidine-degrading pathway in Pseudomonas aeruginosa.
    Lessie TG; Neidhardt FC
    J Bacteriol; 1967 Jun; 93(6):1800-10. PubMed ID: 4290562
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.