BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 4561387)

  • 1. Correlation between hexose transport and phosphotransferase activity in Escherichia coli.
    Kornberg HL; Reeves RE
    Biochem J; 1972 Mar; 126(5):1241-3. PubMed ID: 4561387
    [No Abstract]   [Full Text] [Related]  

  • 2. The role of the phosphoenolpyruvate-phosphotransferase system in the transport of sugars by isolated membrane preparations of Escherichia coli.
    Kaback HR
    J Biol Chem; 1968 Jul; 243(13):3711-24. PubMed ID: 4872728
    [No Abstract]   [Full Text] [Related]  

  • 3. Inducible phosphoenolpyruvate-dependent hexose phosphotransferase activities in Escherichia coli.
    Kornberg HL; Reeves RE
    Biochem J; 1972 Aug; 128(5):1339-44. PubMed ID: 4345358
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Effect of a mutational lesion to the phosphoenolpyruvate-dependent phosphotransferase system on the transport of hydrolyzable beta-galactosides in Escherichia coli K12].
    Bol'shakova TN; Burd GI; Gershanovich VN
    Biokhimiia; 1974; 39(4):808-10. PubMed ID: 4613390
    [No Abstract]   [Full Text] [Related]  

  • 5. The role of the phosphoenolpyruvate phosphotransferase system in the transport of N-acetyl-D-glucosamine by Escherichia coli.
    White RJ
    Biochem J; 1970 Jun; 118(1):89-92. PubMed ID: 4919472
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Probable role of a membrane-bound phosphoenolpyruvate-hexose phosphotransferase system of Escherichia coli in the permeation of sugars.
    Ghosh S; Ghosh D
    Indian J Biochem; 1968 Jun; 5(2):49-52. PubMed ID: 4239922
    [No Abstract]   [Full Text] [Related]  

  • 7. Studies on a phosphoenol pyruvate hexose phosphotransferase system in Vibrio cholerae.
    Bag J
    Indian J Biochem Biophys; 1973 Dec; 10(4):257-60. PubMed ID: 4601148
    [No Abstract]   [Full Text] [Related]  

  • 8. Bacterial phosphoenolpyruvate: sugar phosphotransferase systems: structural, functional, and evolutionary interrelationships.
    Saier MH
    Bacteriol Rev; 1977 Dec; 41(4):856-71. PubMed ID: 339892
    [No Abstract]   [Full Text] [Related]  

  • 9. Relationships between beta-galactoside transport system and phosphoenolpyruvate-dependent phosphotransferase system in Escherichia coli K12.
    Burd GI; Bol'shakova TN; Gershanovich VN
    Mol Biol; 1973; 7(3):252-6. PubMed ID: 4589445
    [No Abstract]   [Full Text] [Related]  

  • 10. Pyruvate formation during the catabolism of simple hexose sugars by Escherichia coli: studies with pyruvate kinase-negative mutants.
    Pertierra AG; Cooper RA
    J Bacteriol; 1977 Mar; 129(3):1208-14. PubMed ID: 321416
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biochemical characterization of the ctr mutants of Escherichia coli.
    Morse HG; Penberthy WK; Morse ML
    J Bacteriol; 1971 Nov; 108(2):690-4. PubMed ID: 4942759
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sugar transport. VII. Lactose transport in Staphylococcus aureus.
    Simoni RD; Roseman S
    J Biol Chem; 1973 Feb; 248(3):966-74. PubMed ID: 4684717
    [No Abstract]   [Full Text] [Related]  

  • 13. Unmasking of an essential thiol during function of the membrane-bound enzyme II of the phosphenolpyruvate beta-glucoside phosphotransferase system of Escherichia coli.
    Haguenauer-Tsapis R; Kepes A
    Biochim Biophys Acta; 1979 Feb; 551(1):157-68. PubMed ID: 371680
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Distribution of the phosphoenolpyruvate: glucose phosphotransferase system in bacteria.
    Romano AH; Eberhard SJ; Dingle SL; McDowell TD
    J Bacteriol; 1970 Nov; 104(2):808-13. PubMed ID: 5489437
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Restoration of active transport of glycosides in Escherichia coli by a component of a phosphotransferase system.
    Kundig W; Kundig FD; Anderson B; Roseman S
    J Biol Chem; 1966 Jul; 241(13):3243-6. PubMed ID: 5330267
    [No Abstract]   [Full Text] [Related]  

  • 16. Insulin action on Escherichia coli. Regulation of the adenylate cyclase and phosphotransferase enzymes.
    Abou-Sabe' M; Reilly T
    Biochim Biophys Acta; 1978 Sep; 542(3):442-55. PubMed ID: 356893
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Studies on the uptake of hexose phosphates. 3. Mechanism of uptake of glucose 1-phosphate in Escherichia coli.
    Dietz GW; Heppel LA
    J Biol Chem; 1971 May; 246(9):2891-7. PubMed ID: 4324342
    [No Abstract]   [Full Text] [Related]  

  • 18. Reversible inactivation of vectorial phosphorylation by hydroxybutynoate in Escherichia coli membrane vesicles.
    Kaczorowski G; Kaback HR; Walsh C
    Biochemistry; 1975 Aug; 14(17):3903-8. PubMed ID: 1100101
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Formation and utilization of PEP in microbial carbohydrate transport.
    Kornberg HL
    Curr Top Cell Regul; 1981; 18():313-27. PubMed ID: 6268363
    [No Abstract]   [Full Text] [Related]  

  • 20. The beta-glucoside system of Escherichia coli. 3. Properties of a P-HPr: beta-glucoside phosphotransferase extracted from membranes with detergent.
    Rose SP; Fox CF
    J Supramol Struct; 1973; 1(6):565-87. PubMed ID: 4592819
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.