These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
43. Revised 2.3 A structure of porcine pepsin: evidence for a flexible subdomain. Abad-Zapatero C; Rydel TJ; Erickson J Proteins; 1990; 8(1):62-81. PubMed ID: 2217165 [TBL] [Abstract][Full Text] [Related]
44. NMR study of the inhibition of pepsin by glyoxal inhibitors: mechanism of tetrahedral intermediate stabilization by the aspartyl proteases. Cosgrove S; Rogers L; Hewage CM; Malthouse JP Biochemistry; 2007 Oct; 46(39):11205-15. PubMed ID: 17824620 [TBL] [Abstract][Full Text] [Related]
45. Accumulation of acyl-enzyme in DD-peptidase-catalysed reactions with analogues of peptide substrates. Jamin M; Adam M; Damblon C; Christiaens L; Frère JM Biochem J; 1991 Dec; 280 ( Pt 2)(Pt 2):499-506. PubMed ID: 1747125 [TBL] [Abstract][Full Text] [Related]
46. The inhibition of pepsin-catalysed reactions by products and product analogues. Kinetic evidence for ordered release of products. Greenwell P; Knowles JR; Sharp H Biochem J; 1969 Jun; 113(2):363-8. PubMed ID: 4897199 [TBL] [Abstract][Full Text] [Related]
47. Isothiourea-catalysed asymmetric C-acylation of silyl ketene acetals. Woods PA; Morrill LC; Bragg RA; Smith AD Chemistry; 2011 Sep; 17(39):11060-7. PubMed ID: 21853484 [TBL] [Abstract][Full Text] [Related]
48. Enzyme:substrate hydrogen bond shortening during the acylation phase of serine protease catalysis. Fodor K; Harmat V; Neutze R; Szilágyi L; Gráf L; Katona G Biochemistry; 2006 Feb; 45(7):2114-21. PubMed ID: 16475800 [TBL] [Abstract][Full Text] [Related]
49. Inactivation of aspartyl proteinases by butane-2,3-dione. Modification of tryptophan and tyrosine residues and evidence against reaction of arginine residues. Gripon JC; Hofmann T Biochem J; 1981 Jan; 193(1):55-65. PubMed ID: 6796042 [TBL] [Abstract][Full Text] [Related]
50. Inactivation of pepsin by diphenyldiazomethane. Delpierre GR; Fruton JS Proc Natl Acad Sci U S A; 1965 Oct; 54(4):1161-7. PubMed ID: 5327254 [No Abstract] [Full Text] [Related]
51. Trapping the acyl-enzyme intermediate in beta-lactamase I catalysis. Cartwright SJ; Tan AK; Fink AL Biochem J; 1989 Nov; 263(3):905-12. PubMed ID: 2512916 [TBL] [Abstract][Full Text] [Related]
52. Promiscuous protease-catalyzed aldol reactions: a facile biocatalytic protocol for carbon-carbon bond formation in aqueous media. Li C; Zhou YJ; Wang N; Feng XW; Li K; Yu XQ J Biotechnol; 2010 Dec; 150(4):539-45. PubMed ID: 20959128 [TBL] [Abstract][Full Text] [Related]
53. gamma-Glutamyltranspeptidase-catalysed acyl-transfer to the added acceptor does not proceed via the ping-pong mechanism. Gololobov MYu ; Bateman RC Biochem J; 1994 Dec; 304 ( Pt 3)(Pt 3):869-76. PubMed ID: 7818493 [TBL] [Abstract][Full Text] [Related]
54. An insolubilised pepsin. Ryle AP Int J Pept Protein Res; 1972; 4(2):123-4. PubMed ID: 4560580 [No Abstract] [Full Text] [Related]
55. The rate-determining step in pepsin-catalysed reactions, and evidence against an acyl-enzyme intermediate. Cornish-Bowden AJ; Greenwell P; Knowles JR Biochem J; 1969 Jun; 113(2):369-75. PubMed ID: 4897200 [TBL] [Abstract][Full Text] [Related]
56. Acyl and amino intermediates in reactions catalysed by pig pepsin. Analysis of transpeptidation products. Wang TT; Hofmann T Biochem J; 1976 Mar; 153(3):691-9. PubMed ID: 782445 [TBL] [Abstract][Full Text] [Related]
57. Acyl intermediates in pepsin and penicillopepsin catalyzed reactions. Takahashi M; Wang TT; Hofmann T Biochem Biophys Res Commun; 1974 Mar; 57(1):39-46. PubMed ID: 4597409 [No Abstract] [Full Text] [Related]
58. A pepsin-like enzyme from Penicillium janthinellum. Sodek J; Hofmann T J Biol Chem; 1968 Jan; 243(2):450-1. PubMed ID: 4866867 [No Abstract] [Full Text] [Related]
59. Evidence for an acyl intermediate in pepsin-catalysed reactions. Takahashi M; Hofmann T Biochem J; 1972 Apr; 127(2):35P. PubMed ID: 4561920 [No Abstract] [Full Text] [Related]