These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
158 related articles for article (PubMed ID: 4562211)
61. Amino acid transport by choroid plexus in vitro. Lorenzo AV; Cutler RW J Neurochem; 1969 Apr; 16(4):577-85. PubMed ID: 5768213 [No Abstract] [Full Text] [Related]
62. Kinetics of neutral amino acid transport in rat brain in vitro. Smith SE J Neurochem; 1967 Mar; 14(3):291-300. PubMed ID: 6020459 [No Abstract] [Full Text] [Related]
63. Effect of carbon source on the accumulation of cytochrome P-450 in the yeast Saccharomyces cerevisiae. Kärenlampi SO; Marin E; Hänninen OO Biochem J; 1981 Feb; 194(2):407-13. PubMed ID: 7030318 [TBL] [Abstract][Full Text] [Related]
64. Heterotrophic growth of Thiobacillus A2 on sugars and organic acids. Wood AP; Kelly DP Arch Microbiol; 1977 Jun; 113(3):257-64. PubMed ID: 879963 [TBL] [Abstract][Full Text] [Related]
65. Reversible loss of affinity induced by glucose in the maltose-H+ symport of Saccharomyces cerevisiae. Peinado JM; Loureiro-Dias MC Biochim Biophys Acta; 1986 Apr; 856(2):189-92. PubMed ID: 3513836 [TBL] [Abstract][Full Text] [Related]
66. Mechanism of degradation of cytochrome P-450 in non-growing Saccharomyces cerevisiae: anaerobiosis, chloramphenicol, dinitrophenol and cycloheximide as protective agents. Blatiak AA; Gondal JA; Wiseman A Biochem Soc Trans; 1980 Dec; 8(6):711-2. PubMed ID: 7007122 [No Abstract] [Full Text] [Related]
67. Energy requirements for maltose transport in yeast. Serrano R Eur J Biochem; 1977 Oct; 80(1):97-102. PubMed ID: 21792 [TBL] [Abstract][Full Text] [Related]
68. Sterol replacement in saccharomyces cerevisiae. Effect on cellular permeability and sensitivity to nystatin. Karst F; Jund R Biochem Biophys Res Commun; 1976 Jul; 71(2):535-43. PubMed ID: 786288 [No Abstract] [Full Text] [Related]
69. Carbohydrate accumulation and metabolism in Escherichia coli. I. Description of pleiotropic mutants. Wang RJ; Morse ML J Mol Biol; 1968 Feb; 32(1):59-66. PubMed ID: 4868120 [No Abstract] [Full Text] [Related]
70. Transport of L-proline and -aminoisobutyric acid in the isolated rat kidney glomerulus. Mackenzie S; Scriver CR Biochim Biophys Acta; 1971 Sep; 241(3):725-36. PubMed ID: 5160732 [No Abstract] [Full Text] [Related]
71. Inhibition by 2-deoxy-D-glucose of synthesis of glycoprotein enzymes by protoplasts of Saccharomyces: relation to inhibition of sugar uptake and metabolism. Kuo SC; Lampen JO J Bacteriol; 1972 Aug; 111(2):419-29. PubMed ID: 5053466 [TBL] [Abstract][Full Text] [Related]
72. The absorption of sugars and organic acids by the daughter sporocysts of Microphallus similis (JLAAG). McManus DP; James BL Int J Parasitol; 1975 Feb; 5(1):33-8. PubMed ID: 1112628 [No Abstract] [Full Text] [Related]
73. Exogenous carbon and nitrogen requirements for chlamydospore germination by Fusarium solani: dependence on spore density. Griffin GJ Can J Microbiol; 1970 Dec; 16(12):1366-8. PubMed ID: 5521394 [No Abstract] [Full Text] [Related]
74. Effects of the Fenton reagent on transport in yeast. Khansuwan U; Kotyk A Folia Microbiol (Praha); 2000; 45(6):515-20. PubMed ID: 11501417 [TBL] [Abstract][Full Text] [Related]
75. Growth hormone and the metabolism of carbohydrate and lipid in adipose tissue. Goodman HM Ann N Y Acad Sci; 1968 Feb; 148(2):419-40. PubMed ID: 5239682 [No Abstract] [Full Text] [Related]
76. Active transport of amino acids into bone cells. Rosenbusch JP; Flanagan B; Nichols G Biochim Biophys Acta; 1967 Sep; 135(4):732-40. PubMed ID: 6048253 [No Abstract] [Full Text] [Related]
77. Fermentation of various soluble carbohydrates in rumen micro-organisms. Czerkawaki JW; Breckenridge G Proc Nutr Soc; 1969 Sep; 28(2):52A-53A. PubMed ID: 5389489 [No Abstract] [Full Text] [Related]
78. "Active" one-carbon generation in Saccharomyces cerevisiae. Ogur M; Liu TN; Cheung I; Paulavicius I; Wales W; Mehnert D; Blaise D J Bacteriol; 1977 Feb; 129(2):926-33. PubMed ID: 320197 [TBL] [Abstract][Full Text] [Related]
79. Properties of the hexose transport systems of Aspergillus nidulans. Mark CG; Romano AH Biochim Biophys Acta; 1971 Oct; 249(1):216-26. PubMed ID: 4946621 [No Abstract] [Full Text] [Related]
80. Oxidative phosphorylation in yeast. V. Phosphorylation efficiencies in growing cells determined from molar growth yields. Kormancíkov'A V; Kovác L; Vidová M Biochim Biophys Acta; 1969 May; 180(1):9-17. PubMed ID: 5787273 [No Abstract] [Full Text] [Related] [Previous] [Next] [New Search]