These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 4563965)

  • 21. [Purine metabolism and riboflavin formation in microorganisms. II. Purine metabolism and riboflavin synthesis of a purine deficiency mutant of Candida guilliermondii (Cast.) Lang. et G].
    zur Nieden K; Fritsche W; Schlee D; Reinbothe H
    Acta Biol Med Ger; 1969; 23(2):235-43. PubMed ID: 5369708
    [No Abstract]   [Full Text] [Related]  

  • 22. [Involvement of exogenous purines and purine nucleotides in nucleic acid biosynthesis in plague microorganism].
    Maĭskiĭ VG
    Vopr Med Khim; 1968; 14(1):48-53. PubMed ID: 5683370
    [No Abstract]   [Full Text] [Related]  

  • 23. Inosine and guanine phosphoribosyltransferase in Escherichia coli.
    Martin WR; Yang RR
    Biochem Biophys Res Commun; 1972 Sep; 48(6):1641-8. PubMed ID: 4562160
    [No Abstract]   [Full Text] [Related]  

  • 24. UTILIZATION AND INTERCONVERSION OF PURINE BASES AND RIBONUCLEOSIDES BY SALMONELLA TYPHIMURIUM.
    ZIMMERMAN EF; MAGASANIK B
    J Biol Chem; 1964 Jan; 239():293-300. PubMed ID: 14118031
    [No Abstract]   [Full Text] [Related]  

  • 25. Turnover of purine nucleotides in rabbit erythrocytes. II. Studies in vitro.
    Hershko A; Razin A; Shoshani T; Mager J
    Biochim Biophys Acta; 1967 Nov; 149(1):59-73. PubMed ID: 5582757
    [No Abstract]   [Full Text] [Related]  

  • 26. Purine metabolism in Neisseria meningitidis. 3. Utilization of exogenous hypoxanthine, guanine and xanthine.
    Jyssum S
    Acta Pathol Microbiol Scand B; 1975 Oct; 83(5):397-406. PubMed ID: 809993
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Biosynthesis of riboflavin. The structure of the purine precursor.
    Bacher A; Mailänder B
    J Biol Chem; 1973 Sep; 248(17):6227-31. PubMed ID: 4726302
    [No Abstract]   [Full Text] [Related]  

  • 28. Defective guanine uptake in an 8-azaguanine-resistant mutant of Salmonella typhimurium.
    Thakar JH; Kalle GP
    J Bacteriol; 1968 Feb; 95(2):458-64. PubMed ID: 4867741
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Transport of hypoxanthine in fibroblasts with normal and mutant hypoxanthine-guanine phosphoribosyltransferase.
    Benke PJ; Herrick N; Herbert A
    Biochem Med; 1973 Oct; 8(2):309-23. PubMed ID: 4753213
    [No Abstract]   [Full Text] [Related]  

  • 30. Uptake of purine bases by Trypanosoma cruzi culture epimastigotes.
    Guimarães RC; Gutteridge WE
    Braz J Med Biol Res; 1986; 19(3):339-50. PubMed ID: 3297217
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Enzymes of purine metabolism in platelets: phosphoribosylpyrophosphate synthetase and purine phosphoribosyltransferases.
    Jerushalmy Z; Sperling O; Pinkhas J; Krynska M; De Vries A
    Adv Exp Med Biol; 1973; 41():159-62. PubMed ID: 4364685
    [No Abstract]   [Full Text] [Related]  

  • 32. Purine ribonucleotide biosynthesis, interconversion and catabolism in mouse brain in vitro.
    Wong PC; Henderson JF
    Biochem J; 1972 Oct; 129(5):1085-94. PubMed ID: 4348168
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A novel mechanism of mycophenolic acid resistance in the protozoan parasite Tritrichomonas foetus.
    Hedstrom L; Cheung KS; Wang CC
    Biochem Pharmacol; 1990 Jan; 39(1):151-60. PubMed ID: 1967525
    [TBL] [Abstract][Full Text] [Related]  

  • 34. In vivo and in vitro complementation between guaB and in vivo complementation between guaA auxotrophs of Salmonella typhimurium.
    Schafer MP; Hannon WH; Levin AP
    J Bacteriol; 1974 Mar; 117(3):1270-9. PubMed ID: 4591951
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The sites of action of allopurinol in Crithidia fasciculata.
    Dewey VC; Kidder GW
    J Protozool; 1973 Nov; 20(5):678-82. PubMed ID: 4763384
    [No Abstract]   [Full Text] [Related]  

  • 36. Purine metabolism in Saccharomyces cerevisiae.
    Burridge PW; Woods RA; Henderson JF
    Can J Biochem; 1977 Sep; 55(9):935-41. PubMed ID: 332289
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Purine and pyrimidine pool sizes and purine base utilization in human lymphocytes and cultured lymphoblasts.
    Fields T; Brox L
    Can J Biochem; 1974 Jun; 52(6):441-6. PubMed ID: 4526502
    [No Abstract]   [Full Text] [Related]  

  • 38. Lesch-Nyhan mutation: the influence of population density on purine phosphoribosyltransferase activities and exogenous purine utilization in monolayer cultures of skin fibroblasts.
    Wood S; Pinsky L
    J Cell Physiol; 1972 Aug; 80(1):33-40. PubMed ID: 4341987
    [No Abstract]   [Full Text] [Related]  

  • 39. Myo-inositol catabolism in Salmonella typhimiurium: enzyme repression dependent on growth history of organism.
    Sundaram TK
    J Gen Microbiol; 1972 Nov; 73(2):209-19. PubMed ID: 4567227
    [No Abstract]   [Full Text] [Related]  

  • 40. The utilization of purines and their ribosyl derivatives for the formation of adenosine triphosphate and guanosine triphosphate in the rabbit reticulocyte.
    Cook JL; Vibert M
    J Biol Chem; 1966 Jan; 241(1):158-60. PubMed ID: 5901044
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.