These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 456449)

  • 1. Effects of inertial load and velocity on the braking process of voluntary limb movements.
    Lestienne F
    Exp Brain Res; 1979 May; 35(3):407-18. PubMed ID: 456449
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Control processes underlying elbow flexion movements may be independent of kinematic and electromyographic patterns: experimental study and modelling.
    St-Onge N; Adamovich SV; Feldman AG
    Neuroscience; 1997 Jul; 79(1):295-316. PubMed ID: 9178885
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On the voluntary movement of compliant (inertial-viscoelastic) loads by parcellated control mechanisms.
    Gottlieb GL
    J Neurophysiol; 1996 Nov; 76(5):3207-29. PubMed ID: 8930267
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Antagonist muscle activity during human forearm movements under varying kinematic and loading conditions.
    Karst GM; Hasan Z
    Exp Brain Res; 1987; 67(2):391-401. PubMed ID: 3622697
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rapid goal-directed elbow flexion movements: limitations of the speed control system due to neural constraints.
    Benecke R; Meinck HM; Conrad B
    Exp Brain Res; 1985; 59(3):470-7. PubMed ID: 4029322
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Organizing principles for single-joint movements. I. A speed-insensitive strategy.
    Gottlieb GL; Corcos DM; Agarwal GC
    J Neurophysiol; 1989 Aug; 62(2):342-57. PubMed ID: 2769334
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The synergy of elbow extensor muscles during dynamic work in man. II. Braking of elbow flexion.
    Maton B; Le Bozec S; Cnockaert JC
    Eur J Appl Physiol Occup Physiol; 1980; 44(3):271-8. PubMed ID: 7190921
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Braking of fast and accurate elbow flexions in the monkey.
    Flament D; Hore J; Vilis T
    J Physiol; 1984 Apr; 349():195-202. PubMed ID: 6737291
    [TBL] [Abstract][Full Text] [Related]  

  • 9. One-trial adaptation of movement to changes in load.
    Weeks DL; Aubert MP; Feldman AG; Levin MF
    J Neurophysiol; 1996 Jan; 75(1):60-74. PubMed ID: 8822542
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Timing and magnitude of electromyographic activity for two-joint arm movements in different directions.
    Karst GM; Hasan Z
    J Neurophysiol; 1991 Nov; 66(5):1594-604. PubMed ID: 1765796
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The relationship between control, kinematic and electromyographic variables in fast single-joint movements in humans.
    Feldman AG; Adamovich SV; Levin MF
    Exp Brain Res; 1995; 103(3):440-50. PubMed ID: 7789450
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of single-limb inertial loading on bilateral reaching: interlimb interactions.
    Hatzitaki V; McKinley P
    Exp Brain Res; 2001 Sep; 140(1):34-45. PubMed ID: 11500796
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Relationship between EMG patterns and kinematic properties for flexion movements at the human wrist.
    Mustard BE; Lee RG
    Exp Brain Res; 1987; 66(2):247-56. PubMed ID: 3595772
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Contributions to the understanding of gait control.
    Simonsen EB
    Dan Med J; 2014 Apr; 61(4):B4823. PubMed ID: 24814597
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Trained slow tracking. I. Muscular production of wrist movement.
    Schieber MH; Thach WT
    J Neurophysiol; 1985 Nov; 54(5):1213-27. PubMed ID: 4078615
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Organization of motor output in slow finger movements in man.
    Vallbo AB; Wessberg J
    J Physiol; 1993 Sep; 469():673-91. PubMed ID: 8271223
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Movement and electromyographic disorders associated with cerebellar dysmetria.
    Flament D; Hore J
    J Neurophysiol; 1986 Jun; 55(6):1221-33. PubMed ID: 3734856
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Organizing principles for single joint movements: V. Agonist-antagonist interactions.
    Gottlieb GL; Latash ML; Corcos DM; Liubinskas TJ; Agarwal GC
    J Neurophysiol; 1992 Jun; 67(6):1417-27. PubMed ID: 1629754
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The organization of quick corrections within a two-joint synergy in conditions of unexpected blocking and release of a fast movement.
    Latash ML
    Clin Neurophysiol; 2000 Jun; 111(6):975-87. PubMed ID: 10825703
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deficits in the coordination of agonist and antagonist muscles in stroke patients: implications for normal motor control.
    Levin MF; Selles RW; Verheul MH; Meijer OG
    Brain Res; 2000 Jan; 853(2):352-69. PubMed ID: 10640634
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.