BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 4565498)

  • 1. Comparison of the effect of acidic inhibitors upon anaerobic phosphate uptake and dinitrophenol extrusion by metabolizing yeast cells.
    Borst-Pauwels GW; Huygen PL
    Biochim Biophys Acta; 1972 Oct; 288(1):166-71. PubMed ID: 4565498
    [No Abstract]   [Full Text] [Related]  

  • 2. The mechanism of inhibition of anaerobic phosphate uptake by fatty acids in yeast.
    Borst-Pauwels GW; Dobbelmann J
    Biochim Biophys Acta; 1972 Dec; 290(1):348-54. PubMed ID: 4565645
    [No Abstract]   [Full Text] [Related]  

  • 3. The effect of N,N'-dicyclohexylcarbodiimide on anaerobic and aerobic phosphate uptake by baker's yeast.
    Huygen PL; Borst-Pauwels GW
    Biochim Biophys Acta; 1972 Nov; 283(2):234-8. PubMed ID: 4574239
    [No Abstract]   [Full Text] [Related]  

  • 4. Effects of sodium azide and 2,4-dinitrophenol on phosphorylation reactions and ion fluxes in Saccharomyces cerevisiae.
    Riemersma JC
    Biochim Biophys Acta; 1968 Jan; 153(1):80-7. PubMed ID: 5638404
    [No Abstract]   [Full Text] [Related]  

  • 5. Inhibition of phosphate and arsenate uptake in yeast by monoiodoacetate, fluoride, 2,4-dinitrophenol and acetate.
    Borst-Pauwels GW; Jager S
    Biochim Biophys Acta; 1969 Apr; 172(3):399-406. PubMed ID: 5782246
    [No Abstract]   [Full Text] [Related]  

  • 6. On the dual role of respiration.
    Engelhardt WA
    Mol Cell Biochem; 1974 Nov; 5(1-2):25-33. PubMed ID: 4372523
    [No Abstract]   [Full Text] [Related]  

  • 7. The site of action of 2,4-dinitrophenol and salicylic acid upon the uncoupler-induced K+ efflux from non-metabolizing yeast.
    Hoeberichts JA; Hulsebos TJ; Van Wezenbeek PM; Borst-Pauwels GW
    Biochim Biophys Acta; 1980; 595(1):126-32. PubMed ID: 6985570
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inhibition of thiamine transport in anaerobic baker's yeast by iodoacetate, 2,4-dinitrophenol N,N'-dicyclohexylcarbodiimide and fatty acids.
    Iwashima A; Nose Y
    Biochim Biophys Acta; 1975 Aug; 399(2):375-83. PubMed ID: 1100110
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Uptake of amino acids by actidione-treated yeast cells. II. Effect of incubation conditions and metabolic inhibitors.
    Kotyk A; Ríhová L; Ponec M
    Folia Microbiol (Praha); 1971; 16(6):445-50. PubMed ID: 4947178
    [No Abstract]   [Full Text] [Related]  

  • 10. Mechanism of degradation of cytochrome P-450 in non-growing Saccharomyces cerevisiae: anaerobiosis, chloramphenicol, dinitrophenol and cycloheximide as protective agents.
    Blatiak AA; Gondal JA; Wiseman A
    Biochem Soc Trans; 1980 Dec; 8(6):711-2. PubMed ID: 7007122
    [No Abstract]   [Full Text] [Related]  

  • 11. Regulation of the cAMP level in the yeast Saccharomyces cerevisiae: intracellular pH and the effect of membrane depolarizing compounds.
    Thevelein JM; Beullens M; Honshoven F; Hoebeeck G; Detremerie K; den Hollander JA; Jans AW
    J Gen Microbiol; 1987 Aug; 133(8):2191-6. PubMed ID: 2832518
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cotransport of phosphate and sodium by yeast.
    Roomans GM; Blasco F; Borst-Pauwels GW
    Biochim Biophys Acta; 1977 May; 467(1):65-71. PubMed ID: 16650
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of inhibitors on acid production by baker's yeast.
    Sigler K; Knotková A; Kotyk A
    Folia Microbiol (Praha); 1978; 23(6):409-22. PubMed ID: 105974
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interaction of phosphate with monovalent cation uptake in yeast.
    Roomans GM; Borst-Pauwels GW
    Biochim Biophys Acta; 1977 Oct; 470(1):84-91. PubMed ID: 20145
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of nitrilotriacetic acid on Cd2+ uptake by yeast.
    Ahlers J; Rösick E
    Bull Environ Contam Toxicol; 1986 Jul; 37(1):96-105. PubMed ID: 3521768
    [No Abstract]   [Full Text] [Related]  

  • 16. Studies on phosphate transport in Escherichia coli. II. Effects of metabolic inhibitors and divalent cations.
    Rae AS; Strickland KP
    Biochim Biophys Acta; 1976 May; 433(3):564-82. PubMed ID: 132192
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Properties of three distinct pyrimide transport systems in yeast. Evidence for distinct energy coupling.
    Losson R; Jund R; Chevallier MR
    Biochim Biophys Acta; 1978 Nov; 513(2):296-300. PubMed ID: 152649
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Energy-dependent transport of manganese into yeast cells and distribution of accumulated ions.
    Okorokov LA; Lichko LP; Kadomtseva VM; Kholodenko VP; Titovsky VT; Kulaev IS
    Eur J Biochem; 1977 May; 75(2):373-7. PubMed ID: 328273
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ureidosuccinic acid permeation in Saccharomyces cerevisiae.
    Greth ML; Chevallier MR; Lacroute F
    Biochim Biophys Acta; 1977 Feb; 465(1):138-51. PubMed ID: 13831
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Energy requirements for the uptake of L-leucine by Saccharomyces cerevisiae.
    Ramos EH; de Bongioanni LC; Claisse ML; Stoppani AO
    Biochim Biophys Acta; 1975 Jul; 394(3):470-81. PubMed ID: 1093572
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.