These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 456576)

  • 1. Ion conductivity of the open keyhole limpet hemocyanin channel.
    Antolini R; Menestrina G
    FEBS Lett; 1979 Apr; 100(2):377-81. PubMed ID: 456576
    [No Abstract]   [Full Text] [Related]  

  • 2. On the structure of the hemocyanin channel in lipid bilayers.
    McIntosh TJ; Robertson JD; Ting-Beall HP; Walter A; Zampighi G
    Biochim Biophys Acta; 1980 Sep; 601(2):289-301. PubMed ID: 6250611
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A three-barrier model for the hemocyanin channel.
    Cecchi X; Alvarez O; Latorre R
    J Gen Physiol; 1981 Dec; 78(6):657-81. PubMed ID: 6278051
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A different kind of hemocyanin channel in oxidized cholesterol membranes.
    Menestrina G; Antolini R
    Biochem Biophys Res Commun; 1979 May; 88(2):433-9. PubMed ID: 465048
    [No Abstract]   [Full Text] [Related]  

  • 5. The dependence of the conductance of the hemocyanin channel on applied potential and ionic concentration with mono- and divalent cations.
    Menestrina G; Antolini R
    Biochim Biophys Acta; 1982 Jun; 688(3):673-84. PubMed ID: 6288088
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ion transport through hemocyanin channels in oxidized cholesterol artificial bilayer membranes.
    Menestrina G; Antolini R
    Biochim Biophys Acta; 1981 May; 643(3):616-25. PubMed ID: 6264956
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The nature of the voltage-dependent conductance of the hemocyanin channel.
    Latorre R; Alvarez O; Ehrenstein G; Espinoza M; Reyes J
    J Membr Biol; 1975 Dec; 25(1-2):163-81. PubMed ID: 1214285
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Voltage-dependent conductance induced by hemocyanin in black lipid films.
    Alvarez O; Diaz E; Latorre R
    Biochim Biophys Acta; 1975 May; 389(3):444-8. PubMed ID: 1125307
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ionic selectivity revisited: the role of kinetic and equilibrium processes in ion permeation through channels.
    Eisenman G; Horn R
    J Membr Biol; 1983; 76(3):197-225. PubMed ID: 6100862
    [No Abstract]   [Full Text] [Related]  

  • 10. The kinetics of ion movements in the gramicidin channel.
    Urban BW; Hladky SB; Haydon DA
    Fed Proc; 1978 Oct; 37(12):2628-32. PubMed ID: 81148
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transport processes in membranes: a consideration of membrane potential across thick and thin membranes.
    Lakshminarayanaiah N
    Subcell Biochem; 1979; 6():401-94. PubMed ID: 377586
    [No Abstract]   [Full Text] [Related]  

  • 12. Probing the pore size of the hemocyanin channel.
    Cecchi X; Bull R; Franzoy R; Coronado R; Alvarez O
    Biochim Biophys Acta; 1982 Dec; 693(1):173-6. PubMed ID: 6295479
    [TBL] [Abstract][Full Text] [Related]  

  • 13. N-acetyl gramicidin: single-channel properties and implications for channel structure.
    Szabo G; Urry DW
    Science; 1979 Jan; 203(4375):55-7. PubMed ID: 83000
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Immunotherapeutic effect of Concholepas hemocyanin in the murine bladder cancer model: evidence for conserved antitumor properties among hemocyanins.
    Moltedo B; Faunes F; Haussmann D; De Ioannes P; De Ioannes AE; Puente J; Becker MI
    J Urol; 2006 Dec; 176(6 Pt 1):2690-5. PubMed ID: 17085197
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Angstrom-scale ion channels towards single-ion selectivity.
    Zhang H; Li X; Hou J; Jiang L; Wang H
    Chem Soc Rev; 2022 Mar; 51(6):2224-2254. PubMed ID: 35225300
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ion permeation of pores in model membranes: selectivity, fluctuations and the role of surface charge.
    Bashford CL
    Eur Biophys J; 2004 May; 33(3):280-2. PubMed ID: 14598001
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure-function study on a de novo synthetic hydrophobic ion channel.
    Qi Z; Sokabe M; Donowaki K; Ishida H
    Biophys J; 1999 Feb; 76(2):631-41. PubMed ID: 9929469
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Desformylgramicidin: a model channel with an extremely high water permeability.
    Saparov SM; Antonenko YN; Koeppe RE; Pohl P
    Biophys J; 2000 Nov; 79(5):2526-34. PubMed ID: 11053127
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Voltage-gated anion channel of the electric organ of Narke japonica incorporated into planar bilayers.
    Kanemasa T; Banba K; Kasai M
    J Biochem; 1987 Apr; 101(4):1025-32. PubMed ID: 2440854
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A lipid dependence in the formation of twin ion channels.
    Al-Momani L; Reiss P; Koert U
    Biochem Biophys Res Commun; 2005 Mar; 328(1):342-7. PubMed ID: 15670789
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.