BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

281 related articles for article (PubMed ID: 4566525)

  • 1. Structure of membrane holes in osmotic and saponin hemolysis.
    Seeman P; Cheng D; Iles GH
    J Cell Biol; 1973 Feb; 56(2):519-27. PubMed ID: 4566525
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transient holes in the erythrocyte membrane during hypotonic hemolysis and stable holes in the membrane after lysis by saponin and lysolecithin.
    Seeman P
    J Cell Biol; 1967 Jan; 32(1):55-70. PubMed ID: 10976201
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Membrane lesions in immune lysis: surface rings, globule aggregates and transient openings.
    Iles GH; Seeman P; Naylor D; Cinader B
    J Cell Biol; 1973 Feb; 56(2):528-39. PubMed ID: 4734192
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [The erythrocyte membrane. Fine structure of the freeze etched membrane after treatment with hypotonic solutions and saponin].
    Huhn D; Pauli GD; Grassmann D
    Klin Wochenschr; 1970 Aug; 48(15):939-43. PubMed ID: 4933166
    [No Abstract]   [Full Text] [Related]  

  • 5. Hemolysis of human erythrocytes with saponin affects the membrane structure.
    Baumann E; Stoya G; Völkner A; Richter W; Lemke C; Linss W
    Acta Histochem; 2000 Feb; 102(1):21-35. PubMed ID: 10726162
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Requirements for maximal enrichment of viable intraerythrocytic Plasmodium falciparum rings by saponin hemolysis.
    Orjih AU
    Exp Biol Med (Maywood); 2008 Nov; 233(11):1359-67. PubMed ID: 18791132
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Micromorphologic consequences following perturbation of erythrocyte membranes by trypsin, phospholipase A, lysolecithin, sodium dodecyl sulfate and saponin. A correlated freeze-etching and biochemical study.
    Speth V; Wallach DF; Weidekamm E; Knüfermann H
    Biochim Biophys Acta; 1972 Jan; 255(1):386-94. PubMed ID: 5062322
    [No Abstract]   [Full Text] [Related]  

  • 8. Role of membrane sialic acid and glycophorin protein in thorium induced aggregation and hemolysis of human erythrocytes.
    Kumar A; Ali M; Pandey BN; Hassan PA; Mishra KP
    Biochimie; 2010 Jul; 92(7):869-79. PubMed ID: 20362640
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Osmotic hemolysis contrasted with freeze-thaw hemolysis.
    Pribor DB
    Cryobiology; 1971 Feb; 8(1):14-24. PubMed ID: 4252889
    [No Abstract]   [Full Text] [Related]  

  • 10. Membrane splitting in freeze-ethching. Covalently bound ferritin as a membrane marker.
    Pinto da Silva P; Branton D
    J Cell Biol; 1970 Jun; 45(3):598-605. PubMed ID: 4918216
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hyperosmotic hemolysis and antihemolytic activity of the saponin fraction and triterpene glycosides from Panax ginseng C. A. Meyer.
    Kim YuA ; Akoev VR; Elemesov RE
    Membr Cell Biol; 2000; 14(2):237-51. PubMed ID: 11093585
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Complement-induced changes in the core structure of sheep erythrocyte membranes: a study by freeze-etch electron microscopy.
    Bhakdi S; Speth V; Knüfermann H; Wallach DF; Fischer H
    Biochim Biophys Acta; 1974 Aug; 356(3):300-8. PubMed ID: 4210701
    [No Abstract]   [Full Text] [Related]  

  • 13. The amphiphilic nature of saponins and their effects on artificial and biological membranes and potential consequences for red blood and cancer cells.
    Lorent JH; Quetin-Leclercq J; Mingeot-Leclercq MP
    Org Biomol Chem; 2014 Nov; 12(44):8803-22. PubMed ID: 25295776
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The contribution of saponin hemolysis in observing membrane properties of erythrocytes.
    Tatsumi N; Maeda H; Wada Y
    Nihon Ketsueki Gakkai Zasshi; 1982 Feb; 45(1):31-7. PubMed ID: 7113612
    [No Abstract]   [Full Text] [Related]  

  • 15. The susceptibility of cholesterol-depleted erythrocytes to saponin and sapogenin hemolysis.
    Segal R; Milo-Goldzweig I
    Biochim Biophys Acta; 1978 Sep; 512(1):223-6. PubMed ID: 698216
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Erythrocyte membrane interactions with menadione and the mechanism of menadione-induced hemolysis.
    Mezick JA; Settlemire CT; Brierley GP; Barefield KP; Jensen WN; Cornwell DG
    Biochim Biophys Acta; 1970 Dec; 219(2):361-71. PubMed ID: 5497195
    [No Abstract]   [Full Text] [Related]  

  • 17. The hemolytic activity of chrysotile asbestos fibers: a freeze-fracture study.
    Pelé JP; Dunnigan J; Calvert R
    Environ Res; 1983 Jun; 31(1):152-63. PubMed ID: 6303772
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Localization of cholesterol in membranes of erythrocyte ghosts.
    Higgins JA; Florendo NT; Barrnett RJ
    J Ultrastruct Res; 1973 Jan; 42(1):66-81. PubMed ID: 4119258
    [No Abstract]   [Full Text] [Related]  

  • 19. Anionic sites of human erythrocyte membranes. I. Effects of trypsin, phospholipase C, and pH on the topography of bound positively charged colloidal particles.
    Nicolson GL
    J Cell Biol; 1973 May; 57(2):373-87. PubMed ID: 4121289
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Some aspects of the osmotic lysis of erythrocytes. I. A reexamination of the osmotic lysis method.
    Wessels JM; Pals DT; Veerkamp JH
    Biochim Biophys Acta; 1973 Jan; 291(1):165-77. PubMed ID: 4684607
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 15.