These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

84 related articles for article (PubMed ID: 456761)

  • 1. Social experience affects the development of dendritic spines and branches on tectal interneurons in the jewel fish.
    Coss RG; Globus A
    Dev Psychobiol; 1979 Jul; 12(4):347-58. PubMed ID: 456761
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spine stems on tectal interneurons in jewel fish are shortened by social stimulation.
    Coss RG; Globus A
    Science; 1978 May; 200(4343):787-90. PubMed ID: 644322
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Short-term juvenile crowding arrests the developmental formation of dendritic spines on tectal interneurons in jewel fish.
    Burgess JW; Coss RG
    Dev Psychobiol; 1981 Jul; 14(4):389-96. PubMed ID: 7250527
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of chronic crowding stress on midbrain development: changes in dendritic spine density and morphology in jewel fish optic tectum.
    Burgess JW; Coss RG
    Dev Psychobiol; 1982 Sep; 15(5):461-70. PubMed ID: 6890000
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Time-lapse in vivo imaging of the morphological development of Xenopus optic tectal interneurons.
    Wu GY; Cline HT
    J Comp Neurol; 2003 May; 459(4):392-406. PubMed ID: 12687706
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deprived somatosensory-motor experience in stumptailed monkey neocortex: dendritic spine density and dendritic branching of layer IIIB pyramidal cells.
    Bryan GK; Riesen AH
    J Comp Neurol; 1989 Aug; 286(2):208-17. PubMed ID: 2794116
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chronic exposure to caffeine during early development increases dendritic spine and branch formation in midbrain optic tectum.
    Burgess JW; Monachello MP
    Brain Res; 1983 Jan; 282(2):123-9. PubMed ID: 6831235
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intermediate and deep layers of the macaque superior colliculus: a Golgi study.
    Ma TP; Cheng HW; Czech JA; Rafols JA
    J Comp Neurol; 1990 May; 295(1):92-110. PubMed ID: 1692855
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional imaging reveals rapid development of visual response properties in the zebrafish tectum.
    Niell CM; Smith SJ
    Neuron; 2005 Mar; 45(6):941-51. PubMed ID: 15797554
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The combined effects of unilateral enucleation and rearing in a "dim" red light on synapse-to-neuron ratios in the rat superior colliculus.
    Mackay D; Bedi KS
    J Comp Neurol; 1987 Feb; 256(3):444-53. PubMed ID: 3571516
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Golgi-electron microscopic study of goldfish optic tectum. I. Description of afferents, cell types, and synapses.
    Meek J
    J Comp Neurol; 1981 Jun; 199(2):149-73. PubMed ID: 7251937
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Postnatal maturation of neurons in the rabbit superior colliculus.
    Mathers LH
    J Comp Neurol; 1977 Jun; 173(3):439-56. PubMed ID: 856892
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tectal neurons of the frog: intracellular recording and labeling with cobalt electrodes.
    Antal M; Matsumoto N; Székely G
    J Comp Neurol; 1986 Apr; 246(2):238-53. PubMed ID: 3485664
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Direct connections between dendritic terminals of tectal ganglion cells and glutamate-positive terminals of presumed optic fibres in layers 4-5 of the optic tectum of Gallus domesticus. A light- and electron microscopic study.
    Tömböl T; Németh A
    Neurobiology (Bp); 1999; 7(1):45-67. PubMed ID: 10746250
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Relationship between the environment and pyramidal neuron differentiation in the hippocampus (CA 1) of the rat. Differentiation of apical lateral and basal dendrites].
    Frotscher M; Scharmacher K; Scharmacher M
    J Hirnforsch; 1978; 19(5):445-56. PubMed ID: 748456
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Changes in cortical dendritic branching subsequent to partial social isolation in stumptailed monkeys.
    Struble RG; Riesen AH
    Dev Psychobiol; 1978 Sep; 11(5):479-86. PubMed ID: 99341
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Early development of spiny neurons in fish and mouse: morphometric measures of dendritic spine formation pattern.
    Burgess JW; Monachello MP; McGinn MD
    Brain Res; 1982 Aug; 256(4):465-72. PubMed ID: 7127153
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Receptive field characteristics of superior colliculus neurons and visually guided behavior in dark-reared hamsters.
    Rhoades RW; Chalupa LM
    J Comp Neurol; 1978 Jan; 177(1):17-32. PubMed ID: 618438
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A comparison of dendritic spine number and type on pyramidal neurons of the visual cortex of old adult rats from social or isolated environments.
    Connor JR; Diamond MC
    J Comp Neurol; 1982 Sep; 210(1):99-106. PubMed ID: 6290545
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Delayed plasticity of an instinct: recognition and avoidance of 2 facing eyes by the jewel fish.
    Coss RG
    Dev Psychobiol; 1979 Jul; 12(4):335-45. PubMed ID: 456760
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.