BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 4567788)

  • 1. Function of cytidine diphosphate-diglyceride and deoxycytidine diphosphate-diglyceride in the biogenesis of membrane lipids in Escherichia coli.
    Raetz CR; Kennedy EP
    J Biol Chem; 1973 Feb; 248(3):1098-105. PubMed ID: 4567788
    [No Abstract]   [Full Text] [Related]  

  • 2. Biosynthesis of cardiolipin in Escherichia coli.
    Stanacev NZ; Chang YY; Kennedy EP
    J Biol Chem; 1967 Jun; 242(12):3018-9. PubMed ID: 4290869
    [No Abstract]   [Full Text] [Related]  

  • 3. Purification and properties of Bacillus subtilis nucleoside diphosphokinase.
    Sedmak J; Ramaley R
    J Biol Chem; 1971 Sep; 246(17):5365-72. PubMed ID: 4999354
    [No Abstract]   [Full Text] [Related]  

  • 4. The synthesis and utilization of dCDP-diglyceride by a mitochondrial fraction from rat liver.
    ter Schegget J; van den Bosch H; van Baak MA; Hostetler KY; Borst P
    Biochim Biophys Acta; 1971 Jul; 239(2):234-42. PubMed ID: 5119258
    [No Abstract]   [Full Text] [Related]  

  • 5. Pools of deoxyribonucleoside triphosphates in the mitotic cycle of Physarum.
    Bersier D; Braun R
    Biochim Biophys Acta; 1974 Apr; 340(4):463-71. PubMed ID: 4857593
    [No Abstract]   [Full Text] [Related]  

  • 6. Enzymatic synthesis of deoxyribonucleotides. IX. Allosteric effects in the reduction of pyrimidine ribonucleotides by the ribonucleoside diphosphate reductase system of Escherichia coli.
    Larsson A; Reichard P
    J Biol Chem; 1966 Jun; 241(11):2533-9. PubMed ID: 5330119
    [No Abstract]   [Full Text] [Related]  

  • 7. Ribosome degradation and the degradation products in starved Escherichia coli. II. Changes in base sequence of ribosomal RNA during degradation induced by phosphate and magnesium starvation.
    Maruyama H; Mizuno D
    Biochim Biophys Acta; 1970 Jan; 199(1):166-75. PubMed ID: 4905131
    [No Abstract]   [Full Text] [Related]  

  • 8. Ribonucleoside triphosphate accumulation on amino acid starvation of "stringent" Escherichia coli.
    Bagnara AS; Finch LR
    Biochem Biophys Res Commun; 1968 Oct; 33(1):15-21. PubMed ID: 4235117
    [No Abstract]   [Full Text] [Related]  

  • 9. Cytidine triphosphate: phosphatidic acid cytidyltransferase in Escherichia coli.
    Carter JR
    J Lipid Res; 1968 Nov; 9(6):748-54. PubMed ID: 4879388
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A membrane-bound pyrophosphatase in Escherichia coli catalyzing the hydrolysis of cytidine diphosphate-diglyceride.
    Raetz CR; Hirschberg CB; Dowhan W; Wickner WT; Kennedy EP
    J Biol Chem; 1972 Apr; 247(7):2245-7. PubMed ID: 4335869
    [No Abstract]   [Full Text] [Related]  

  • 11. Identification of cytidine diphosphate-diglyceride in the pineal gland of the rat and its accumulation in the presence of DL-propranolol.
    Hauser G; Eichberg J
    J Biol Chem; 1975 Jan; 250(1):105-12. PubMed ID: 1141202
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Utilization of deoxyribonucleoside diphosphates by toluene-treated Escherichia coli cells lacking deoxyribonucleic acid polymerase I.
    Hsieh WT
    Biochim Biophys Acta; 1971 Jun; 240(1):157-61. PubMed ID: 4940154
    [No Abstract]   [Full Text] [Related]  

  • 13. [Studies on the endogenous metabolism of mycobacteria. I. On the separation of phosphorylated metabolites from the acid-soluble fraction].
    Reutgen H; Iwainsky H
    Z Naturforsch B; 1967 Oct; 22(10):1043-50. PubMed ID: 4385820
    [No Abstract]   [Full Text] [Related]  

  • 14. The interaction of transfer factor G, ribosomes, and guanosine nucleotides in the presence of fusidic acid.
    Brot N; Spears C; Weissbach H
    Arch Biochem Biophys; 1971 Mar; 143(1):286-96. PubMed ID: 4934881
    [No Abstract]   [Full Text] [Related]  

  • 15. Properties and cellular distribution of cyclic AMP-dependent protein kinase from thymus.
    Klein MI; Makman MH
    J Cell Physiol; 1972 Jun; 79(3):407-12. PubMed ID: 4339124
    [No Abstract]   [Full Text] [Related]  

  • 16. Nucleoside triphosphate pools in synchronous cultures of Escherichia coli.
    Huzyk L; Clark DJ
    J Bacteriol; 1971 Oct; 108(1):74-81. PubMed ID: 4941576
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Allosteric effects and substrate specificity of the ribonucleoside diphosphate reductase system from Escherichia coli B.
    Larsson A; Reichard P
    Biochim Biophys Acta; 1966 Feb; 113(2):407-8. PubMed ID: 5328937
    [No Abstract]   [Full Text] [Related]  

  • 18. Role of silicon in diatom metabolism. II. Endogenous nucleoside triphosphate pools during silicic acid starvation of synchronized Cylindrotheca fusiformis.
    Sullivan CW; Volcani BE
    Biochim Biophys Acta; 1973 May; 308(2):205-11. PubMed ID: 4350314
    [No Abstract]   [Full Text] [Related]  

  • 19. A procedure for the measurement of intracellular deoxyribonucleoside triphosphate pools by thin layer chromatography.
    Yegian CD
    Anal Biochem; 1974 Mar; 58(1):231-7. PubMed ID: 4596572
    [No Abstract]   [Full Text] [Related]  

  • 20. Regulation of phospholipid synthesis in Escherichia coli by guanosine tetraphosphate.
    Merlie JP; Pizer LI
    J Bacteriol; 1973 Oct; 116(1):355-66. PubMed ID: 4583220
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.