BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 4567975)

  • 1. Absence of glucokinase in Methanomonas sp. as a cause for their inability to grow on glucose.
    Amemiya K
    Can J Microbiol; 1972 Dec; 18(12):1907-13. PubMed ID: 4567975
    [No Abstract]   [Full Text] [Related]  

  • 2. Enzymes of glucose catabolism in cell-free extracts of non-fermentative marine eubacteria.
    Baumann L; Baumann P
    Can J Microbiol; 1973 Feb; 19(2):302-4. PubMed ID: 4266757
    [No Abstract]   [Full Text] [Related]  

  • 3. The pentose phosphate pathway: evidence for the indispensable role of glucose-phosphate isomerase.
    Morgan MJ
    FEBS Lett; 1981 Jul; 130(1):124-6. PubMed ID: 7197230
    [No Abstract]   [Full Text] [Related]  

  • 4. Enzyme activities associated with carbohydrate synthesis and breakdown in the yeast and mycelial forms of Candida albicans.
    Chattaway FW; Bishop R; Holmes MR; Odds FC; Barlow AJ
    J Gen Microbiol; 1973 Mar; 75(1):97-109. PubMed ID: 4269159
    [No Abstract]   [Full Text] [Related]  

  • 5. Possible regulation on carbohydrate metabolism exerted by glucose-6-phosphate isomerase and glucose-6-phosphate dehydrogenase activity ratio during Bufo bufo development.
    Miranda M
    Acta Embryol Exp (Palermo); 1976; (1):3-14. PubMed ID: 820150
    [No Abstract]   [Full Text] [Related]  

  • 6. Glucose and gluconate metabolism in an Escherichia coli mutant lacking phosphoglucose isomerase.
    Fraenkel DG; Levisohn SR
    J Bacteriol; 1967 May; 93(5):1571-8. PubMed ID: 5337843
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phenotypic suppression of a fructose-1,6-diphosphate aldolase mutation in Escherichia coli.
    Schreyer R; Böck A
    J Bacteriol; 1973 Jul; 115(1):268-76. PubMed ID: 4577744
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis of cell constituents by methane-grown Methylococcus capsulatus and Methanomonas methanooxidans.
    Lawrence AJ; Kemp MB; Quayle JR
    Biochem J; 1970 Feb; 116(4):631-9. PubMed ID: 5435492
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [De novo synthesis of glycogen by an Escherichia coli mutant lacking glucose-phosphate isomerase and D-glucose-6-phosphate dehydrogenase].
    Chambost JP; Favard A; Cattanéo J
    Carbohydr Res; 1972 Oct; 24(2):379-91. PubMed ID: 4582389
    [No Abstract]   [Full Text] [Related]  

  • 10. Control of the pentose-phosphate pathway in yeast.
    Osmond CB; Ap Rees T
    Biochim Biophys Acta; 1969 Jun; 184(1):35-42. PubMed ID: 5791114
    [No Abstract]   [Full Text] [Related]  

  • 11. [Microbial assimilation of methanol. Incorporation of formaldehyde into fructose- and glucose phosphates by cell-free extract of Candida boidinii (author's transl)].
    Sahm H; Wagner F
    Arch Microbiol; 1974 Apr; 97(2):163-8. PubMed ID: 4836298
    [No Abstract]   [Full Text] [Related]  

  • 12. Glucose metabolism in 6 phosphogluconolactonase mutants of Escherichia coli.
    Kupor SR; Fraenkel DG
    J Biol Chem; 1972 Mar; 247(6):1904-10. PubMed ID: 4552019
    [No Abstract]   [Full Text] [Related]  

  • 13. Pentose phosphate pathway metabolism by normal and glucose-6-phosphate dehydrogenase-deficient human red cell haemolysates.
    Sturman JA
    Clin Chim Acta; 1967 Nov; 18(2):245-8. PubMed ID: 4383831
    [No Abstract]   [Full Text] [Related]  

  • 14. The pentose phosphate pathway in rabbit liver. Studies on the metabolic sequence and quantitative role of the pentose phosphate cycle by using a system in situ.
    Williams JF; Rienits KG; Schofield PJ; Clark MG
    Biochem J; 1971 Aug; 123(5):923-43. PubMed ID: 5124395
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thiamine deficiency and the hepatic pentose phosphate cycle.
    McCandless DW; Cassidy CE; Curley AD
    Biochem Med; 1975 Dec; 14(4):384-90. PubMed ID: 1227514
    [No Abstract]   [Full Text] [Related]  

  • 16. The pentose phosphate pathway of glucose metabolism. Hormonal and dietary control of the oxidative and non-oxidative reactions of the cycle in liver.
    Novello F; Gumaa JA; McLean P
    Biochem J; 1969 Mar; 111(5):713-25. PubMed ID: 5791534
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Physiological studies of methane and methanol-oxidizing bacteria: oxidation of C-1 compounds by Methylococcus capsulatus.
    Patel RN; Hoare DS
    J Bacteriol; 1971 Jul; 107(1):187-92. PubMed ID: 5563868
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sugar synthesis in Leptospira. I. Presence of glucosephosphate isomerase.
    Yanagihara Y; Kobayashi S; Mifuchi I
    Microbiol Immunol; 1984; 28(2):189-96. PubMed ID: 6727717
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phosphoglucoisomerase-catalyzed interconversion of hexose phosphates. Study by 13C NMR of proton and deuteron exchange.
    Malaisse WJ; Liemans V; Malaisse-Lagae F; Ottinger R; Willem R
    Mol Cell Biochem; 1991 May; 103(2):131-40. PubMed ID: 1649380
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An evaluation of regulation of the hexose monophosphate shunt in Escherichia coli.
    Orthner CL; Pizer LI
    J Biol Chem; 1974 Jun; 249(12):3750-5. PubMed ID: 4151946
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.