These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
135 related articles for article (PubMed ID: 4568614)
1. Transport of succinate in Escherichia coli. II. Characteristics of uptake and energy coupling with transport in membrane preparations. Rayman MK; Lo TC; Sanwal BD J Biol Chem; 1972 Oct; 247(19):6332-9. PubMed ID: 4568614 [No Abstract] [Full Text] [Related]
2. Transport of succinate in Escherichia coli. I. Biochemical and genetic studies of transport in whole cells. Lo TC; Rayman MK; Sanwal BD J Biol Chem; 1972 Oct; 247(19):6323-31. PubMed ID: 4346810 [No Abstract] [Full Text] [Related]
3. Mechanisms of active transport in isolated membrane vesicles. I. The site of energy coupling between D-lactic dehydrogenase and beta-galactoside transport in Escherichia coli membrane vesicles. Barnes EM; Kaback HR J Biol Chem; 1971 Sep; 246(17):5518-22. PubMed ID: 4330922 [No Abstract] [Full Text] [Related]
4. Transport of dicarboxylic acids in Bacillus subtilis. Inducible uptake of L-malate. Fournier RE; McKillen MN; Pardee AB; Willecke K J Biol Chem; 1972 Sep; 247(17):5587-95. PubMed ID: 4626722 [No Abstract] [Full Text] [Related]
5. Deoxycytidine uptake by isolated membrane vesicles from Escherichia coli K 12. Komatsu Y; Tanaka K Biochim Biophys Acta; 1973 Jul; 311(4):496-506. PubMed ID: 4354132 [No Abstract] [Full Text] [Related]
6. Dehydrogenase activity involved in the uptake of glucose 6-phosphate by a bacterial membrane system. Dietz GW J Biol Chem; 1972 Jul; 247(14):4561-5. PubMed ID: 4557845 [No Abstract] [Full Text] [Related]
7. Transport of succinate in Escherichia coli. III. Biochemical and genetic studies of the mechanism of transport in membrane vesicles. Lo TC; Rayman MK; Sanwal BD Can J Biochem; 1974 Oct; 52(10):854-66. PubMed ID: 4138960 [No Abstract] [Full Text] [Related]
8. Mechanisms of active transport in isolated bacterial membrane vesicles. 8. The transport of amino acids by membranes prepared from Escherichia coli. Lombardi FJ; Kaback HR J Biol Chem; 1972 Dec; 247(24):7844-57. PubMed ID: 4344983 [No Abstract] [Full Text] [Related]
9. Amino acid transport in membrane vesicles of Bacillus subtilis. Konings WN; Freese E J Biol Chem; 1972 Apr; 247(8):2408-18. PubMed ID: 4401701 [No Abstract] [Full Text] [Related]
10. Adenosine uptake by isolated membrane vesicles from Escherichia coli K-12. Komatsu Y Biochim Biophys Acta; 1973 Dec; 330(2):206-21. PubMed ID: 4591127 [No Abstract] [Full Text] [Related]
11. Energization of energy-dependent transhydrogenase of Escherichia coli at a second site of energy conservation. Bragg PD; Hou C Arch Biochem Biophys; 1974 Aug; 163(2):614-6. PubMed ID: 4153348 [No Abstract] [Full Text] [Related]
12. The effect of sulfhydryl inhibitors on substrate oxidation and proline transport with membrane preparations from Mycobacterium phlei. Kosmakos FC; Brodie AF J Biol Chem; 1974 Nov; 249(21):6956-64. PubMed ID: 4370899 [No Abstract] [Full Text] [Related]
13. The comparative biochemistry of developing Ascaris eggs. VII. Malate oxidation and metabolism in unembryonated eggs. Costello LC; Smith W; Oya H Comp Biochem Physiol; 1967 Apr; 21(1):161-70. PubMed ID: 4382290 [No Abstract] [Full Text] [Related]
14. Isolation of the soluble substrate recognition component of the dicarboxylate transport system of Escherichia coli. Lo TC; Sanwal BD J Biol Chem; 1975 Feb; 250(4):1600-2. PubMed ID: 803506 [TBL] [Abstract][Full Text] [Related]
15. Coupling of energy to active transport of amino acids in Escherichia coli. Simoni RD; Shallenberger MK Proc Natl Acad Sci U S A; 1972 Sep; 69(9):2663-7. PubMed ID: 4341704 [TBL] [Abstract][Full Text] [Related]
16. -Galactoside accumulation in a Mg 2+ -,Ca 2+ -activated ATPase deficient mutant of E.coli. Schairer HU; Haddock BA Biochem Biophys Res Commun; 1972 Aug; 48(3):544-51. PubMed ID: 4261724 [No Abstract] [Full Text] [Related]
17. Respiration dependent transport of proline by electron transport particles from mycobacterium phlei. Hirata H; Asano A; Brodie AF Biochem Biophys Res Commun; 1971 Jul; 44(2):368-74. PubMed ID: 4334137 [No Abstract] [Full Text] [Related]
18. Mechanisms of active transport in isolated bacterial membrane vesicles. 8. Valinomycin-induced rubidium transport. Lombardi FJ; Reeves JP; Kaback HR J Biol Chem; 1973 May; 248(10):3551-65. PubMed ID: 4573982 [No Abstract] [Full Text] [Related]
19. Transport of lactate and succinate by membrane vesicles of Escherichia coli, Bacillus subtilis and a pseudomonas species. Matin A; Konings WN Eur J Biochem; 1973 Apr; 34(1):58-67. PubMed ID: 4349657 [No Abstract] [Full Text] [Related]
20. Suppression of a dicarboxylic acid transport mutant phenotype in Escherichia coli K12. Kay WW Biochim Biophys Acta; 1972 May; 264(3):522-9. PubMed ID: 4554902 [No Abstract] [Full Text] [Related] [Next] [New Search]