These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

83 related articles for article (PubMed ID: 4568808)

  • 1. Studies on the influence of radiation of Saccharomyces cerevisiae under anaerobic conditions.
    Bomar MT
    Int J Appl Radiat Isot; 1973 Jan; 24(1):13-8. PubMed ID: 4568808
    [No Abstract]   [Full Text] [Related]  

  • 2. Necessity of glycolysis for recovery from ultraviolet killing of Saccharomyces cerevisiae.
    Atsuta J; Okajima S
    Radiat Res; 1976 Mar; 65(3):550-7. PubMed ID: 772738
    [No Abstract]   [Full Text] [Related]  

  • 3. The effect of chlorhexidine on the anaerobic fermentation of Saccharomyces cerevisiae related to the release of protein.
    Jensen JE
    Biochem Pharmacol; 1977 Dec; 26(24):2365-9. PubMed ID: 339924
    [No Abstract]   [Full Text] [Related]  

  • 4. The effect of chlorhexidine on the anaerobic fermentation of Saccharomyces cerevisiae.
    Jensen JE
    Biochem Pharmacol; 1975 Dec; 24(23):2163-6. PubMed ID: 1108884
    [No Abstract]   [Full Text] [Related]  

  • 5. [Malic acid metabolism of Saccharomyces. I. Anaerobic decomposition of malic acid by Saccharomyces cerevisiae].
    Fuck E; Radler F
    Arch Mikrobiol; 1972; 87(2):149-64. PubMed ID: 4404718
    [No Abstract]   [Full Text] [Related]  

  • 6. Low-temperature induction of respiratory deficiency in yeast mutants.
    Butow RA; Ferguson MJ; Cederbaum A
    Biochemistry; 1973 Jan; 12(1):158-64. PubMed ID: 4566926
    [No Abstract]   [Full Text] [Related]  

  • 7. Use of sequential-batch fermentations to characterize the impact of mild hypothermic temperatures on the anaerobic stoichiometry and kinetics of Saccharomyces cerevisiae.
    Cruz AL; Verbon AJ; Geurink LJ; Verheijen PJ; Heijnen JJ; van Gulik WM
    Biotechnol Bioeng; 2012 Jul; 109(7):1735-44. PubMed ID: 22359245
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Energy metabolism in yeast cells after u.v.- and x-irradiation.
    Kiefer J
    Int J Radiat Biol Relat Stud Phys Chem Med; 1974 Aug; 26(2):167-79. PubMed ID: 4608190
    [No Abstract]   [Full Text] [Related]  

  • 9. The effect of lactic acid on anaerobic carbon or nitrogen limited chemostat cultures of Saccharomyces cerevisiae.
    Thomsson E; Larsson C
    Appl Microbiol Biotechnol; 2006 Jul; 71(4):533-42. PubMed ID: 16317544
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Anaerobiosis revisited: growth of Saccharomyces cerevisiae under extremely low oxygen availability.
    da Costa BLV; Basso TO; Raghavendran V; Gombert AK
    Appl Microbiol Biotechnol; 2018 Mar; 102(5):2101-2116. PubMed ID: 29397429
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anaerobic and aerobic batch cultivations of Saccharomyces cerevisiae mutants impaired in glycerol synthesis.
    Nissen TL; Hamann CW; Kielland-Brandt MC; Nielsen J; Villadsen J
    Yeast; 2000 Mar; 16(5):463-74. PubMed ID: 10705374
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanism of carbon dioxide fixation by Saccharomyces cerevisiae.
    STOPPANI AO; DE FAVELUKES SL; CONCHES L; SACERDOTE FL
    Biochim Biophys Acta; 1957 Nov; 26(2):443-5. PubMed ID: 13499393
    [No Abstract]   [Full Text] [Related]  

  • 13. Contribution of the individual HXT gene products to CO2 production.
    Klaassen P; Raamsdonk L
    Folia Microbiol (Praha); 1998; 43(2):197-200. PubMed ID: 9721611
    [No Abstract]   [Full Text] [Related]  

  • 14. Extreme ultraviolet radiation-sensitivity of respiratory adaptation in Saccharomyces cerevisiae cells during transition.
    Pasupathy K; Pradhan DS
    Biochem Biophys Res Commun; 1978 Jul; 83(2):365-72. PubMed ID: 358979
    [No Abstract]   [Full Text] [Related]  

  • 15. The metabolic factors limiting the growth of Saccharomyces cerevisiae subjected to -irradiation.
    Godbole SS; Nadkarni GB
    Biochem J; 1972 Jun; 128(1):64P. PubMed ID: 4563771
    [No Abstract]   [Full Text] [Related]  

  • 16. Metabolic flux analysis of Saccharomyces cerevisiae in a sealed winemaking fermentation system.
    Li H; Su J; Ma W; Guo A; Shan Z; Wang H
    FEMS Yeast Res; 2015 Mar; 15(2):. PubMed ID: 25757889
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biosynthesis of thiamin under anaerobic conditions in Saccharomyces cerevisiae.
    Tanaka K; Tazuya K; Yamada K; Kumaoka H
    Biol Pharm Bull; 2000 Jan; 23(1):108-11. PubMed ID: 10706422
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Central carbon metabolism of Saccharomyces cerevisiae in anaerobic, oxygen-limited and fully aerobic steady-state conditions and following a shift to anaerobic conditions.
    Wiebe MG; Rintala E; Tamminen A; Simolin H; Salusjärvi L; Toivari M; Kokkonen JT; Kiuru J; Ketola RA; Jouhten P; Huuskonen A; Maaheimo H; Ruohonen L; Penttilä M
    FEMS Yeast Res; 2008 Feb; 8(1):140-54. PubMed ID: 17425669
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Carbon dioxide fixation during the oxidation of pyruvic acid by Saccharomyces cerevisiae].
    STOPPANI AO; CONCHES L; DE FAVELUKES SL; SACERDOTE FL
    Rev Soc Argent Biol; 1956; 32(6-8):175-84. PubMed ID: 13454060
    [No Abstract]   [Full Text] [Related]  

  • 20. Starvation response of Saccharomyces cerevisiae grown in anaerobic nitrogen- or carbon-limited chemostat cultures.
    Thomsson E; Gustafsson L; Larsson C
    Appl Environ Microbiol; 2005 Jun; 71(6):3007-13. PubMed ID: 15932996
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.