These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 4568817)

  • 1. The interaction of phosphoglucomutase with nucleotide inhibitors.
    Duckworth HW; Barber BH; Sanwal BD
    J Biol Chem; 1973 Feb; 248(4):1431-5. PubMed ID: 4568817
    [No Abstract]   [Full Text] [Related]  

  • 2. Inhibition of phosphoglucomutase by fructose 2,6-bisphosphate.
    Bartrons R; Carreras M; Climent F; Carreras J
    Biochim Biophys Acta; 1985 Sep; 842(1):52-5. PubMed ID: 2931119
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Studies on crystalline yeast phosphoglucomutase: the presence of intrinsic zinc.
    Hirose M; Sugimoto E; Chiba H
    Biochim Biophys Acta; 1972 Nov; 289(1):137-46. PubMed ID: 4628805
    [No Abstract]   [Full Text] [Related]  

  • 4. The inhibition of acetate, pyruvate, and 3-phosphogylcerate kinases by chromium adenosine triphosphate.
    Janson CA; Cleland WW
    J Biol Chem; 1974 Apr; 249(8):2567-71. PubMed ID: 4362687
    [No Abstract]   [Full Text] [Related]  

  • 5. Arrangement of the phosphate-and metal-binding subsites of phosphoglucomutase. Intersubsite relationships by means of inhibition patterns.
    Ray WJ; Mildvan AS; Long JW
    Biochemistry; 1973 Sep; 12(19):3724-32. PubMed ID: 4788309
    [No Abstract]   [Full Text] [Related]  

  • 6. Electron paramagnetic resonance studies of manganese (II) coordination in the phosphoglucomutase system.
    Reed GH; Ray WJ
    Biochemistry; 1971 Aug; 10(17):3190-7. PubMed ID: 4330325
    [No Abstract]   [Full Text] [Related]  

  • 7. Structural aspects of manganese-pyruvate kinase substrate and inhibitor complexes deduced from proton magnetic relaxation rates of pyruvate and a phosphoenolpyruvate analog.
    James TL; Cohn M
    J Biol Chem; 1974 Jun; 249(11):3519-26. PubMed ID: 4831226
    [No Abstract]   [Full Text] [Related]  

  • 8. The binding of manganese-nucleoside diphosphates to creatine kinase as determined by proton relaxation rate measurements.
    O'Sullivan WJ; Reed GH; Marsden KH; Gough GR; Lee CS
    J Biol Chem; 1972 Dec; 247(24):7839-43. PubMed ID: 4640926
    [No Abstract]   [Full Text] [Related]  

  • 9. A model for nucleotide regulation of aspartate transcarbamylase.
    London RE; Schmidt PG
    Biochemistry; 1972 Aug; 11(16):3136-42. PubMed ID: 4557519
    [No Abstract]   [Full Text] [Related]  

  • 10. Magnetic resonance studies of substrate and inhibitor binding to porcine muscle adenylate kinase.
    Price NC; Reed GH; Cohn M
    Biochemistry; 1973 Aug; 12(17):3322-7. PubMed ID: 4354608
    [No Abstract]   [Full Text] [Related]  

  • 11. Arrangement of the phosphate-and metal-binding subsites of phosphoglucomutase. Intersubsite distance by means of nuclear magnetic resonance measurements.
    Ray WJ; Mildvan AS
    Biochemistry; 1973 Sep; 12(19):3733-43. PubMed ID: 4788310
    [No Abstract]   [Full Text] [Related]  

  • 12. Nuclear magnetic relaxation studies of the conformation of adenosine 5'-triphosphate on pyruvate kinase from rabbit muscle.
    Sloan DL; Mildvan AS
    J Biol Chem; 1976 Apr; 251(8):2412-20. PubMed ID: 177414
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Magnetic resonance studies of the conformation of enzyme-bound adenylyl(3' leads to 5')uridine and adenosine 5'-triphosphate on RNA polymerase from Esherichia coli.
    Bean BL; Koren R; Mildvan AS
    Biochemistry; 1977 Jul; 16(15):3322-33. PubMed ID: 329869
    [No Abstract]   [Full Text] [Related]  

  • 14. Comparison of some reactions catalyzed by deoxyribonucleic acid polymerase from avian myeloblastosis virus, Escherichia coli, and Micrococcus luteus.
    Wells RD; Flügel RM; Larson JE; Schendel PF; Sweet RW
    Biochemistry; 1972 Feb; 11(4):621-9. PubMed ID: 4334908
    [No Abstract]   [Full Text] [Related]  

  • 15. Probes for the conformational transitions of phosphorylase . Effect of ligands studied by proton-relaxation enhancement, and chemical reactivities.
    Dwek RA; Radda GK; Richards RE; Salmon AG
    Eur J Biochem; 1972 Sep; 29(3):509-14. PubMed ID: 4673398
    [No Abstract]   [Full Text] [Related]  

  • 16. Magnetic resonance studies on the binding of manganese to D-fructose-1,6-diphosphate 1-phosphohydrolase (hexose-1,6-diphosphatase).
    Kolb HJ; Kolb H
    Hoppe Seylers Z Physiol Chem; 1973 Mar; 354(3):331-6. PubMed ID: 4372146
    [No Abstract]   [Full Text] [Related]  

  • 17. Preferential interaction of manganous ions with the guanine moiety in nucleosides, dinucleoside monophosphates, and deoxyribonucleic acid.
    Anderson JA; Kuntz GP; Evans HH; Swift TJ
    Biochemistry; 1971 Nov; 10(24):4368-74. PubMed ID: 4946917
    [No Abstract]   [Full Text] [Related]  

  • 18. Spin-labelled phosphofructokinase and its interactions with ATP and metal-ATP complexes as studied by magnetic-resonance methods.
    Jones R; Dwek RA; Walker IO
    Eur J Biochem; 1973 Apr; 34(1):28-40. PubMed ID: 4349656
    [No Abstract]   [Full Text] [Related]  

  • 19. Role of an allosteric effector. Guanosine triphosphate activation in cytosine triphosphate synthetase.
    Levitzki A; Koshland DE
    Biochemistry; 1972 Jan; 11(2):241-6. PubMed ID: 4550559
    [No Abstract]   [Full Text] [Related]  

  • 20. Mechanism of action of rabbit muscle phosphoglucomutase. Rate of enzyme phosphate turnover studied with a rapid mixing technique.
    Wålinder O; Joshi JG
    J Biol Chem; 1974 May; 249(10):3166-9. PubMed ID: 4830239
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.