These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 4568975)

  • 1. Theoretical models of cellular dielectrophoresis.
    Crane JS; Pohl HA
    J Theor Biol; 1972 Oct; 37(1):15-41. PubMed ID: 4568975
    [No Abstract]   [Full Text] [Related]  

  • 2. Insulator-based dielectrophoresis of microorganisms: theoretical and experimental results.
    Moncada-Hernandez H; Baylon-Cardiel JL; Pérez-González VH; Lapizco-Encinas BH
    Electrophoresis; 2011 Sep; 32(18):2502-11. PubMed ID: 21853448
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differences in the AC electrodynamics of viable and non-viable yeast cells determined through combined dielectrophoresis and electrorotation studies.
    Huang Y; Hölzel R; Pethig R; Wang XB
    Phys Med Biol; 1992 Jul; 37(7):1499-517. PubMed ID: 1631195
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comment on "Thermal noise limit on the sensitivity of cellular membranes to power frequency electric and magnetic fields".
    Adair RK
    Bioelectromagnetics; 2003 Sep; 24(6):444-5; discussion 446-7. PubMed ID: 12929166
    [No Abstract]   [Full Text] [Related]  

  • 5. Dielectric properties of yeast cells as determined by electrorotation.
    Hölzel R; Lamprecht I
    Biochim Biophys Acta; 1992 Feb; 1104(1):195-200. PubMed ID: 1550847
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Yeast cell inactivation related to local heating induced by low-intensity electric fields with long-duration pulses.
    Guyot S; Ferret E; Boehm JB; Gervais P
    Int J Food Microbiol; 2007 Jan; 113(2):180-8. PubMed ID: 17028031
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Passive electrical properties of microorganisms. II. Resistance of the bacterial membrane.
    Carstensen EL
    Biophys J; 1967 Sep; 7(5):493-503. PubMed ID: 4862275
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrorotation of single yeast cells at frequencies between 100 Hz and 1.6 GHz.
    Hölzel R
    Biophys J; 1997 Aug; 73(2):1103-9. PubMed ID: 9251826
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Membrane stability (thermal) and nature of fatty acids in yeast cells.
    Chang SB; Matson RS
    Biochem Biophys Res Commun; 1972 Feb; 46(4):1529-35. PubMed ID: 4552536
    [No Abstract]   [Full Text] [Related]  

  • 10. Dielectric behavior of budding yeast in cell separation.
    Asami K; Gheorghiu E; Yonezawa T
    Biochim Biophys Acta; 1998 Jul; 1381(2):234-40. PubMed ID: 9685659
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of mercuric salts on the electro-rotation of yeast cells and comparison with a theoretical model.
    Geier BM; Wendt B; Arnold WM; Zimmermann U
    Biochim Biophys Acta; 1987 Jun; 900(1):45-55. PubMed ID: 3297146
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dielectrophoresis of cells.
    Pohl HA; Crane JS
    Biophys J; 1971 Sep; 11(9):711-27. PubMed ID: 5132497
    [TBL] [Abstract][Full Text] [Related]  

  • 13. First-principle approach to dielectric behavior of nonspherical cell suspensions.
    Lei J; Wan JT; Yu KW; Sun H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Jul; 64(1 Pt 1):012903. PubMed ID: 11461313
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electro-osmosis in Chara and Nitella cells.
    Barry PH; Hope AB
    Biochim Biophys Acta; 1969 Oct; 193(1):124-8. PubMed ID: 5349607
    [No Abstract]   [Full Text] [Related]  

  • 15. Dielectrophoresis and electrorotation of neurospora slime and murine myeloma cells.
    Gimsa J; Marszalek P; Loewe U; Tsong TY
    Biophys J; 1991 Oct; 60(4):749-60. PubMed ID: 1835890
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dielectrophoretic force.
    Pohl HA; Crane JS
    J Theor Biol; 1972 Oct; 37(1):1-13. PubMed ID: 4652418
    [No Abstract]   [Full Text] [Related]  

  • 17. Thermal noise limit on the sensitivity of cellular membranes to power frequency electric and magnetic fields.
    Kaune WT
    Bioelectromagnetics; 2002 Dec; 23(8):622-8. PubMed ID: 12395418
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Progression of change in membrane capacitance and cytoplasm conductivity of cells during controlled starvation using dual-frequency DEP cytometry.
    Afshar S; Salimi E; Fazelkhah A; Braasch K; Mishra N; Butler M; Thomson DJ; Bridges GE
    Anal Chim Acta; 2019 Jun; 1059():59-67. PubMed ID: 30876633
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improved visualization of wall ultrastructure in Saccharomyces cerevisiae.
    Cassone A
    Experientia; 1973 Oct; 29(10):1303-5. PubMed ID: 4128140
    [No Abstract]   [Full Text] [Related]  

  • 20. Lateral separation of colloids or cells by dielectrophoresis augmented by AC electroosmosis.
    Zhou H; White LR; Tilton RD
    J Colloid Interface Sci; 2005 May; 285(1):179-91. PubMed ID: 15797412
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.