These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 4569021)

  • 61. Implications of a theory of erythrocyte motion in narrow capillaries.
    Fitz-Gerald JM
    J Appl Physiol; 1969 Dec; 27(6):912-8. PubMed ID: 5353223
    [No Abstract]   [Full Text] [Related]  

  • 62. Erythrocyte distribution in arterial blood flow. I. Basic equations and anistropic effects.
    Deakin MA
    Bull Math Biophys; 1967 Sep; 29(3):549-63. PubMed ID: 6048895
    [No Abstract]   [Full Text] [Related]  

  • 63. Influence of intracellular convection on the oxygen release by human erythrocytes.
    Zander R; Schmid-Schönbein H
    Pflugers Arch; 1972; 335(1):58-73. PubMed ID: 4672604
    [No Abstract]   [Full Text] [Related]  

  • 64. On a liquid drop model of blood rheology.
    Kline KA
    Biorheology; 1972 Dec; 9(4):287-99. PubMed ID: 4665828
    [No Abstract]   [Full Text] [Related]  

  • 65. Linear viscoelasticity of suspensions of spherical shell structures and erythrocyte membrane.
    Sakanishi A; Mitaku S; Takano Y
    Thromb Res; 1976 May; 8(2 suppl):35-44. PubMed ID: 936088
    [No Abstract]   [Full Text] [Related]  

  • 66. Blood rheology in trauma patients.
    Long DM; Rosen AL; Malone LV; Meier MA
    Surg Clin North Am; 1972 Feb; 52(1):19-30. PubMed ID: 5013220
    [No Abstract]   [Full Text] [Related]  

  • 67. Dextrans and the rheology of blood.
    Singh M; Coulter NA
    Indian J Med Res; 1974 Apr; 62(4):630-39. PubMed ID: 4435873
    [No Abstract]   [Full Text] [Related]  

  • 68. A preliminary study of rheology of granulocytes.
    Adell R; Skalak R; Branemark PI
    Blut; 1970 Aug; 21(2):91-105. PubMed ID: 5505159
    [No Abstract]   [Full Text] [Related]  

  • 69. Determination of blood viscosity in vitro with a microglass fiber viscosimeter.
    Braasch D
    Pflugers Arch; 1969 Jun; 309(4):350-5. PubMed ID: 5816080
    [No Abstract]   [Full Text] [Related]  

  • 70. Rheological consequences of osmotic red cell crenation.
    Schmid-Schönbein H; Wells R
    Pflugers Arch; 1969; 307(1):59-69. PubMed ID: 5816000
    [No Abstract]   [Full Text] [Related]  

  • 71. Membrane proteins and membrane rheology.
    Blank M; Britten JS
    Biorheology; 1975 Aug; 12(5):271-4. PubMed ID: 1203529
    [No Abstract]   [Full Text] [Related]  

  • 72. Interactions among erythrocytes under shear.
    Brooks DE; Goodwin JW; Seaman GV
    J Appl Physiol; 1970 Feb; 28(2):172-7. PubMed ID: 5413303
    [No Abstract]   [Full Text] [Related]  

  • 73. Assessment of whole blood viscosity: a new technique.
    Schwartz JA; Keagy BA; Crouch JD; Johnson G
    Curr Surg; 1986; 43(6):470-3. PubMed ID: 2948776
    [No Abstract]   [Full Text] [Related]  

  • 74. [Physical method of measuring energy in erythrocyte aggregation].
    Healy JC
    Biorheology; 1974 Jun; 11(3):185-90. PubMed ID: 4441647
    [No Abstract]   [Full Text] [Related]  

  • 75. Influence of erythrocytes on blood viscosity.
    Stone HO; Thompson HK; Schmidt-Nielsen K
    Am J Physiol; 1968 Apr; 214(4):913-8. PubMed ID: 5642957
    [No Abstract]   [Full Text] [Related]  

  • 76. Conductimetric investigation of erythrocyte behaviour during shear flow of concentrated suspensions through a large tube.
    Dellimore JW
    Proc R Soc Lond B Biol Sci; 1976 Jun; 193(1113):359-85. PubMed ID: 11469
    [No Abstract]   [Full Text] [Related]  

  • 77. [Proceedings: Membrane potentials and resistance in the red blood cells in newts; actions of inhibitors on PO2 and temperature effects].
    Yukibuki S; Kawaguchi K; Fukushima M
    Nihon Seirigaku Zasshi; 1974 Sep; 36(8-9):369-70. PubMed ID: 4478533
    [No Abstract]   [Full Text] [Related]  

  • 78. Ultrasonic energy backscattered from blood. An experimental determination of the variation of sound energy with hematocrit.
    Borders SE; Fronek A; Kemper WS; Franklin D
    Ann Biomed Eng; 1978 Jun; 6(2):83-92. PubMed ID: 152591
    [No Abstract]   [Full Text] [Related]  

  • 79. Flow properties of microcapsule suspensions as a model of blood.
    Arakawa M; Kondo T; Tamamushi B
    Biorheology; 1975 Feb; 12(1):57-66. PubMed ID: 241441
    [No Abstract]   [Full Text] [Related]  

  • 80. Blood viscosity reduction in negative charged capillary tubes.
    Ossoff R; Charm SE
    Biorheology; 1974 Jul; 11(4):293-9. PubMed ID: 4447824
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.