BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 4569400)

  • 1. Effect of alanine, leucine and fructose on lysyl-transfer ribonucleic acid ligase activity in a mutant of Escherichia coli K-12.
    Hirshfield IN; Bukald NE
    J Bacteriol; 1973 Jan; 113(1):167-77. PubMed ID: 4569400
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metabolites influence control of lysine transfer ribonucleic acid synthetase formation in Escherichia coli K-12.
    Hirshfield IN; Yeh FM; Sawyer LE
    Proc Natl Acad Sci U S A; 1975 Apr; 72(4):1364-7. PubMed ID: 805427
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An in vivo effect of the metabolites L-alanine and glycyl-L-leucine on the properties of lysyl-tRNA synthetase from Escherichia coli K-12. I. Influence on subunit composition and molecular weight distribution.
    Hirshfield IN; Yeh FM; Zamecnik PC
    Biochim Biophys Acta; 1976 Jul; 435(3):290-305. PubMed ID: 779846
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An in vivo effect of the metabolites L-alanine and glycyl-L-leucine on the properties of the lysyl-tRNA synthetase from Escherichia coli K-12. II. Kinetic evidence.
    Hirshfield IN; Yeh FM
    Biochim Biophys Acta; 1976 Jul; 435(3):306-14. PubMed ID: 779847
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Particular influence of leucine peptides on lysyl-transfer ribonucleic acid ligase formation in a mutant of Escherichia coli K-12.
    Buklad NE; Sanborn D; Hirshfield IN
    J Bacteriol; 1973 Dec; 116(3):1477-8. PubMed ID: 4584819
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Two modes of metabolic regulation of lysyl-transfer ribonucleic acid synthetase in Escherichia coli K-12.
    Hirshfield IN; Liu C; Yeh FM
    J Bacteriol; 1977 Aug; 131(2):589-97. PubMed ID: 328487
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Substrate specificity of a mutant alanyl-transfer ribonucleic acid synthetase of Escherichia coli.
    Buckel P; Lubitz W; Böck A
    J Bacteriol; 1971 Dec; 108(3):1008-16. PubMed ID: 4945179
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chemical measurement of steady-state levels of ten aminoacyl-transfer ribonucleic acid synthetases in Escherichia coli.
    Neidhardt FC; Bloch PL; Pedersen S; Reeh S
    J Bacteriol; 1977 Jan; 129(1):378-87. PubMed ID: 318645
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation of synthesis of the aminoacyl-transfer ribonucleic acid synthetases for the branched-chain amino acids of Escherichia coli.
    McGinnis E; Williams LS
    J Bacteriol; 1971 Oct; 108(1):254-62. PubMed ID: 4941558
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of mutants of Escherichia coli temperature-sensitive for ribonucleic acid regulation: an unusual phenotype associated with a phenylalanyl transfer ribonucleic acid synthetase mutant.
    Atherly AG; Suchanek MC
    J Bacteriol; 1971 Nov; 108(2):627-38. PubMed ID: 4942755
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Unusual valyl-transfer ribonucleic acid synthetase mutant of Escherichia coli.
    Anderson JJ; Neidhardt FC
    J Bacteriol; 1972 Jan; 109(1):307-14. PubMed ID: 4550669
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of branched-chain aminoacyl-transfer ribonucleic acid synthetases in an ilvDAC deletion strain of Escherichia coli K-12.
    Coleman W; Kline EL; Brown CS; Williams LS
    J Bacteriol; 1975 Mar; 121(3):785-93. PubMed ID: 1090603
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multiple forms of lysyl-transfer ribonucleic acid synthetase in Escherichia coli.
    Hirshfield IN; Bloch PL; Van Bogelen RA; Neidhardt FC
    J Bacteriol; 1981 Apr; 146(1):345-51. PubMed ID: 7012120
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Growth-linked instability of a mutant valyl-transfer ribonucleic acid synthetase in Escherichia coli.
    Anderson JJ; Neidhardt FC
    J Bacteriol; 1972 Jan; 109(1):315-25. PubMed ID: 4550670
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of synthesis of the branched-chain amino acids and cognate aminoacyl-transfer ribonucleic acid synthetases of Escherichia coli: a common regulatory element.
    Jackson J; Williams LS; Umbarger HE
    J Bacteriol; 1974 Dec; 120(3):1380-6. PubMed ID: 4612020
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Defects of two temperature-sensitive lysyl-transfer ribonucleic acid synthetase mutants of Bacillus subtilis.
    Racine FM; Steinberg W
    J Bacteriol; 1974 Oct; 120(1):372-83. PubMed ID: 4370814
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermal death of temperature-sensitive lysyl- and tryptophanyl-transfer ribonucleic acid synthetase mutants of Bacillus subtilis: effect of culture medium and developmental stage.
    Steinberg W
    J Bacteriol; 1974 Nov; 120(2):767-78. PubMed ID: 4218233
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Isolation and partial characterization of temperature-sensitive Escherichia coli mutants with altered leucyl- and seryl-transfer ribonucleic acid synthetases.
    Low B; Gates F; Goldstein T; Söll D
    J Bacteriol; 1971 Nov; 108(2):742-50. PubMed ID: 4942762
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Control of arginine biosynthesis in Escherichia coli: role of arginyl-transfer ribonucleic acid synthetase in repression.
    Williams LS
    J Bacteriol; 1973 Mar; 113(3):1419-32. PubMed ID: 4570785
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of synthesis of methionyl-, prolyl-, and threonyl-transfer ribonucleic acid synthetases of Escherichia coli.
    Archibold ER; Williams LS
    J Bacteriol; 1972 Mar; 109(3):1020-6. PubMed ID: 4551738
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.