These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 4571031)

  • 21. [Morphological changes in the cochlea in experimental noise trauma: phase contrast microscopy].
    Suladze ESh; Gvakhariia ZV
    Vestn Otorinolaringol; 1973; 35(3):23-6. PubMed ID: 4590424
    [No Abstract]   [Full Text] [Related]  

  • 22. Effect of isobaric oxygen versus hyperbaric oxygen on the normal and noise-damaged hypoxic and ischemic guinea pig inner ear.
    Lamm K; Lamm C; Arnold W
    Adv Otorhinolaryngol; 1998; 54():59-85. PubMed ID: 9547878
    [No Abstract]   [Full Text] [Related]  

  • 23. The effect of noise-induced sloping high-frequency hearing loss on the gap-response in the inferior colliculus and auditory cortex of guinea pigs.
    Yin SK; Feng YM; Chen ZN; Wang J
    Hear Res; 2008 May; 239(1-2):126-40. PubMed ID: 18348901
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Dynamic properties of the intra-aural reflex in lesions of the lower auditory pathway. An experimental study in rabbits.
    Borg E
    Acta Otolaryngol; 1982; 93(1-2):19-29. PubMed ID: 7064692
    [No Abstract]   [Full Text] [Related]  

  • 25. Studies of acoustical stimulation of the vestibular system.
    Parker DE; von Gierke HE; Reschke M
    Aerosp Med; 1968 Dec; 39(12):1321-5. PubMed ID: 5303658
    [No Abstract]   [Full Text] [Related]  

  • 26. [Action of pulsed noise of great intensity on the organ of hearing].
    Ivanov NI
    Voen Med Zh; 1977 Dec; (12):44-6. PubMed ID: 602047
    [No Abstract]   [Full Text] [Related]  

  • 27. Cell division in the gerbil cochlea after acoustic trauma.
    Roberson DW; Rubel EW
    Am J Otol; 1994 Jan; 15(1):28-34. PubMed ID: 8109626
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Dependence of rapid hearing adaptation on the interstimulus time interval and on the intensity of acoustic signals].
    Bazarov VG; Chaĭka SP; Moroz BS; Chudnovskiĭ SI; Poliakov AN
    Fiziol Zh (1978); 1987; 33(2):19-24. PubMed ID: 3582682
    [No Abstract]   [Full Text] [Related]  

  • 29. [Use of various electrophysiologic methods of objective audiometry for evaluation of the functional state of the peripheral division of the auditory analyzer under clinical and experimental conditions (a review of the current literature)].
    Bakaĭ EA; Kolesnik TE
    Zh Ushn Nos Gorl Bolezn; 1971; 31(6):106-9. PubMed ID: 4949972
    [No Abstract]   [Full Text] [Related]  

  • 30. Normal and pathological adaptation of compound viii nerve responses in the guinea pig.
    Aran JM; de Sauvage RC
    Acta Otolaryngol; 1975; 79(3-4):259-65. PubMed ID: 1136765
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The effects of sonic booms on hearing and inner ear structure.
    Reinis S; Featherstone JW; Weiss DS
    Scand Audiol Suppl; 1980 Aug; (Suppl 12):163-9. PubMed ID: 6939084
    [No Abstract]   [Full Text] [Related]  

  • 32. Therapeutic efficacy of intra-cochlear administration of methylprednisolone after acoustic trauma caused by gunshot noise in guinea pigs.
    Sendowski I; Abaamrane L; Raffin F; Cros A; Clarençon D
    Hear Res; 2006 Nov; 221(1-2):119-27. PubMed ID: 17008037
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Electro-cochleographic findings in posterior fossa tumours (author's transl)].
    Innitzer J
    HNO; 1976 Mar; 24(3):102-5. PubMed ID: 972075
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Impact of sound signals of high intensity on the acoustic analyzer].
    Bogomil'skiĭ MR; D'iakonova IN; Rakhmanova IV; Tikhomirov AM; Golubovskiĭ OA
    Vestn Otorinolaringol; 2006; (3):31-3. PubMed ID: 16912671
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Experimental study on the vulnerability of the inner ear to loud tones].
    Nii K
    Nihon Jibiinkoka Gakkai Kaiho; 1972 Aug; 75(8):847-55. PubMed ID: 4673079
    [No Abstract]   [Full Text] [Related]  

  • 36. Sensitive detection of noise-induced damage in human subjects using transiently evoked otoacoustic emissions.
    Xu ZM; Van Cauwenberge P; Vinck B; De Vel E
    Acta Otorhinolaryngol Belg; 1998; 52(1):19-24. PubMed ID: 9581192
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Role for the lateral olivocochlear neurons in auditory function. Focus on "Selective removal of lateral olivocochlear efferents increases vulnerability to acute acoustic injury".
    Le Prell CG
    J Neurophysiol; 2007 Feb; 97(2):963-5. PubMed ID: 17182904
    [No Abstract]   [Full Text] [Related]  

  • 38. [Certain characteristics of age-related involutional changes in peripheral structures of the auditory analyzer (experimental study)].
    Lopotko AI
    Vestn Otorinolaringol; 1975; (3):22-7. PubMed ID: 1146106
    [No Abstract]   [Full Text] [Related]  

  • 39. [Phase contrast microscopic observations on early degenerating process of the cochlear sensory cell].
    Nakamura S; Ishii Y; Murakami Y; Matusyama S
    J Dent Educ; 1969 Dec; 33(4):564-5. PubMed ID: 4900099
    [No Abstract]   [Full Text] [Related]  

  • 40. Cochlear electrical activity in noise-induced hearing lossmbehavioral and electrophysiological studies in primates.
    Pugh JE; Horwitz MR; Anderson DJ
    Arch Otolaryngol; 1974 Jul; 100(1):36-40. PubMed ID: 4210404
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.