These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 4572511)

  • 1. Phosphoenolpyruvate synthetase from Escherichia coli. Effects of adenylate energy charge and modifier concentrations.
    Chulavatnatol M; Atkinson DE
    J Biol Chem; 1973 Apr; 248(8):2712-5. PubMed ID: 4572511
    [No Abstract]   [Full Text] [Related]  

  • 2. Kinetic competition in vitro between phosphoenolpyruvate synthetase and the pyruvate dehydrogenase complex from Escherichia coli.
    Chulavatnatol M; Atkinson DE
    J Biol Chem; 1973 Apr; 248(8):2716-21. PubMed ID: 4572512
    [No Abstract]   [Full Text] [Related]  

  • 3. Effect of allosteric effectors and adenosine triphosphate on the aggregation and rate of inhibition by N-ethylmaleimide of carbamyl phosphate synthetase of Escherichia coli.
    Anderson PM; Marvin SV
    Biochemistry; 1970 Jan; 9(1):171-8. PubMed ID: 4903882
    [No Abstract]   [Full Text] [Related]  

  • 4. Adenylate energy charge in Escherichia coli CR341T28 and properties of heat-sensitive adenylate kinase.
    Glembotski CC; Chapman AG; Atkinson DE
    J Bacteriol; 1981 Mar; 145(3):1374-85. PubMed ID: 6259132
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adenosine triphosphate and catabolite repression of -galactosidase in escherichia coli.
    Aboud M; Burger M
    Biochem Biophys Res Commun; 1971 Oct; 45(1):190-7. PubMed ID: 4334523
    [No Abstract]   [Full Text] [Related]  

  • 6. Control of adenylate kinase by prostaglandins E2 and E3.
    Abdulla YH; McFarlane E
    Biochem Pharmacol; 1971 Jul; 20(7):1726-30. PubMed ID: 5163102
    [No Abstract]   [Full Text] [Related]  

  • 7. Phosphorylation of glycerol in Staphylococcus aureus.
    Richey DP; Lin EC
    J Bacteriol; 1973 May; 114(2):880-1. PubMed ID: 4574704
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural and catalytic role of arginine 88 in Escherichia coli adenylate kinase as evidenced by chemical modification and site-directed mutagenesis.
    Reinstein J; Gilles AM; Rose T; Wittinghofer A; Saint Girons I; Bârzu O; Surewicz WK; Mantsch HH
    J Biol Chem; 1989 May; 264(14):8107-12. PubMed ID: 2542263
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A nucleotide phosphotransferase from Escherichia coli. Purification and properties.
    Brunngraber EF; Chargaff E
    Biochemistry; 1973 Jul; 12(16):3005-12. PubMed ID: 4581144
    [No Abstract]   [Full Text] [Related]  

  • 10. Evaluation of the phosphoryl-enzyme intermediate concept in the acetate kinase and hexokinase reactions from kinetic studies.
    Purich DL; Fromm HJ
    Arch Biochem Biophys; 1972 Mar; 149(1):307-15. PubMed ID: 4552801
    [No Abstract]   [Full Text] [Related]  

  • 11. A kinetically important phosphoryl-enzyme intermediary in the intrinsic purine nucleoside-5'-diphosphokinase activity of Escherichia coli acetate kinase.
    Todhunter JA; Reichel KB; Purich DL
    Arch Biochem Biophys; 1976 May; 174(1):120-8. PubMed ID: 180890
    [No Abstract]   [Full Text] [Related]  

  • 12. Exploration of adenosine 5'-diphosphate-adenosine 5'-triphosphate binding sites of Escherichia coli adenosine 5'-triphosphatase with arylazido adenine nucleotides.
    Lunardi J; Satre M; Vignais PV
    Biochemistry; 1981 Feb; 20(3):473-80. PubMed ID: 6452156
    [No Abstract]   [Full Text] [Related]  

  • 13. Exchange reactions catalyzed by acetate kinase.
    Anthony RS; Spector LB
    J Biol Chem; 1971 Oct; 246(20):6129-35. PubMed ID: 4942557
    [No Abstract]   [Full Text] [Related]  

  • 14. Monovalent cation effects on lysine-sensitive aspartokinase catalytic activity and allosteric regulation.
    Funkhouser JD; Smith WG
    J Biol Chem; 1974 Dec; 249(23):7580-3. PubMed ID: 4154943
    [No Abstract]   [Full Text] [Related]  

  • 15. Phosphorylated acetate kinase. Its isolation and reactivity.
    Anthony RS; Spector LB
    J Biol Chem; 1972 Apr; 247(7):2120-5. PubMed ID: 4552689
    [No Abstract]   [Full Text] [Related]  

  • 16. Characterization of the reactive sulfhydryl groups in carbamyl phosphate synthetase of Escherichia coli.
    Foley R; Poon J; Anderson PM
    Biochemistry; 1971 Nov; 10(24):4562-9. PubMed ID: 5003988
    [No Abstract]   [Full Text] [Related]  

  • 17. The isolated F0 of Escherichia coli aTP-synthase is reconstitutively active in H+-conduction and ATP-dependent energy-transduction.
    Friedl P; Schairer HU
    FEBS Lett; 1981 Jun; 128(2):261-4. PubMed ID: 6266871
    [No Abstract]   [Full Text] [Related]  

  • 18. Effect of desdanine on nucleoside diphosphate kinase and pyruvate kinase of Escherichia coli.
    Saeki T; Hori M; Umezawa H
    J Antibiot (Tokyo); 1975 Dec; 28(12):974-81. PubMed ID: 173700
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interaction of Escherichia coli carbamyl phosphate synthetase with glutamine.
    Wellner VP; Anderson PM; Meister A
    Biochemistry; 1973 May; 12(11):2061-6. PubMed ID: 4574650
    [No Abstract]   [Full Text] [Related]  

  • 20. Interaction between energy charge and product feedback in the regulation of biosynthetic enzymes. Aspartokinase, phosphoribosyladenosine triphosphate synthetase, and phosphoribosyl pyrophosphate synthetase.
    Klungsoyr L; Hagemen JH; Fall L; Atkinson DE
    Biochemistry; 1968 Nov; 7(11):4035-40. PubMed ID: 4881060
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.