These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 4572725)

  • 1. Sodium and potassium requirements for active transport of glutamate by Escherichia coli K-12.
    Halpern YS; Barash H; Dover S; Druck K
    J Bacteriol; 1973 Apr; 114(1):53-8. PubMed ID: 4572725
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interactions of a glutamate-aspartate binding protein with the glutamate transport system of Escherichia coli.
    Willis RC; Furlong CE
    J Biol Chem; 1975 Apr; 250(7):2581-6. PubMed ID: 1091636
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanism of glutamate transport in Escherichia coli B. 2. Kinetics of glutamate transport driven by artificially imposed proton and sodium ion gradients across the cytoplasmic membrane.
    Fujimura T; Yamato I; Anraku Y
    Biochemistry; 1983 Apr; 22(8):1959-65. PubMed ID: 6133551
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Properties of the glutamate transport system in Escherichia coli.
    Halpern YS; Even-Shoshan A
    J Bacteriol; 1967 Mar; 93(3):1009-16. PubMed ID: 5337827
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Monovalent cation and ouabain effects on PAH uptake by rabbit kidney slices.
    Podevin RA; Boumendil-Podevin EF
    Am J Physiol; 1977 Mar; 232(3):F239-47. PubMed ID: 139109
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The dependence of glutamate uptake by crab nerve on external Na + and K + .
    Baker PF; Potashner SJ
    Biochim Biophys Acta; 1971 Dec; 249(2):616-22. PubMed ID: 5134199
    [No Abstract]   [Full Text] [Related]  

  • 7. Sodium gradient- and sodium plus potassium gradient-dependent L-glutamate uptake in renal basolateral membrane vesicles.
    Sacktor B; Rosenbloom IL; Liang CT; Cheng L
    J Membr Biol; 1981 May; 60(1):63-71. PubMed ID: 7241582
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sodium-stimulated glutamate uptake in membrane vesicles of Escherichia coli: the role of ion gradients.
    MacDonald RE; Lanyi JK; Greene RV
    Proc Natl Acad Sci U S A; 1977 Aug; 74(8):3167-70. PubMed ID: 20621
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sodium-stimulated glutamate transport in osmotically shocked cells and membrane vesicles of Escherichia coli.
    Miner KM; Frank L
    J Bacteriol; 1974 Mar; 117(3):1093-8. PubMed ID: 4591944
    [TBL] [Abstract][Full Text] [Related]  

  • 10. (Na+,K+)-cotransport in the Madin-Darby canine kidney cell line. Kinetic characterization of the interaction between Na+ and K+.
    Rindler MJ; McRoberts JA; Saier MH
    J Biol Chem; 1982 Mar; 257(5):2254-9. PubMed ID: 6277889
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Glutamate transport driven by an electrochemical gradient of sodium ions in Escherichia coli.
    Tsuchiya T; Hasan SM; Raven J
    J Bacteriol; 1977 Sep; 131(3):848-53. PubMed ID: 330502
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sodium gradient-dependent L-glutamate transport is localized to the canalicular domain of liver plasma membranes. Studies in rat liver sinusoidal and canalicular membrane vesicles.
    Ballatori N; Moseley RH; Boyer JL
    J Biol Chem; 1986 May; 261(14):6216-21. PubMed ID: 2871024
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of sodium and lithium ions on the potassium ion transport systems of Escherichia coli.
    Sorensen EN; Rosen BP
    Biochemistry; 1980 Apr; 19(7):1458-62. PubMed ID: 6992866
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sodium-stimulated transport of glutamate in Escherichia coli.
    Frank L; Hopkins I
    J Bacteriol; 1969 Oct; 100(1):329-36. PubMed ID: 4898997
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Glutamate transport in Escherichia coli K-12: nonidentity of carriers mediating entry and exit.
    Halpern YS; Barash H; Druck K
    J Bacteriol; 1973 Jan; 113(1):51-7. PubMed ID: 4567140
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Increase of Na+ gradient-dependent L-glutamate and L-aspartate transport in high K+ dog erythrocytes associated with high activity of (Na+, K+)-ATPase.
    Inaba M; Maede Y
    J Biol Chem; 1984 Jan; 259(1):312-7. PubMed ID: 6142884
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Excitatory amino acid-stimulated uptake of 22Na+ in primary astrocyte cultures.
    Kimelberg HK; Pang S; Treble DH
    J Neurosci; 1989 Apr; 9(4):1141-9. PubMed ID: 2564885
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The metabolism of gamma-aminobutyrate and glucose in potassium ion-stimulated brain tissue in vitro.
    Machiyama Y; Balázs R; Hammond BJ; Julian T; Richter D
    Biochem J; 1970 Feb; 116(3):469-81. PubMed ID: 5435691
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The kinetics of ouabain-sensitive ionic transport in the rabbit carotid artery.
    Heidlage JF; Jones AW
    J Physiol; 1981 Aug; 317():243-62. PubMed ID: 7310733
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Active amino acid transport in plasma membrane vesicles from Simian virus 40-transformed mouse fibroblasts. Characteristics of electrochemical Na+ gradient-stimulated uptake.
    Lever JE
    J Biol Chem; 1977 Mar; 252(6):1990-7. PubMed ID: 66232
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.