BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

303 related articles for article (PubMed ID: 4572794)

  • 21. Organization of the pathway of de novo pyrimidine nucleotide biosynthesis in pea (Pisum sativum L. cv Progress No. 9) leaves.
    Doremus HD
    Arch Biochem Biophys; 1986 Oct; 250(1):112-9. PubMed ID: 2876681
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The influence of ammonia on purine and pyrimidine nucleotide biosynthesis in rat liver and brain in vitro.
    Skaper SD; O'Brien WE; Schafer IA
    Biochem J; 1978 Jun; 172(3):457-64. PubMed ID: 687355
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Carbamoyl phosphate synthetase: closure of the B-domain as a result of nucleotide binding.
    Thoden JB; Wesenberg G; Raushel FM; Holden HM
    Biochemistry; 1999 Feb; 38(8):2347-57. PubMed ID: 10029528
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Functional arginyl residues as ATP binding sites of glutamine synthetase and carbamyl phosphate synthetase.
    Powers SG; Riordan JF
    Proc Natl Acad Sci U S A; 1975 Jul; 72(7):2616-20. PubMed ID: 241076
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Carbamylphosphate synthetase from Salmonella typhimurium. Regulations, subunit composition, and function of the subunits.
    Abdelal AT; Ingraham JL
    J Biol Chem; 1975 Jun; 250(12):4410-7. PubMed ID: 166993
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Protein differentiation: a comparison of aspartate transcarbamoylase and ornithine transcarbamoylase from Escherichia coli K-12.
    Houghton JE; Bencini DA; O'Donovan GA; Wild JR
    Proc Natl Acad Sci U S A; 1984 Aug; 81(15):4864-8. PubMed ID: 6379651
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Allosteric control of the oligomerization of carbamoyl phosphate synthetase from Escherichia coli.
    Kim J; Raushel FM
    Biochemistry; 2001 Sep; 40(37):11030-6. PubMed ID: 11551199
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Site-directed mutagenesis of the regulatory domain of Escherichia coli carbamoyl phosphate synthetase identifies crucial residues for allosteric regulation and for transduction of the regulatory signals.
    Fresquet V; Mora P; Rochera L; Ramón-Maiques S; Rubio V; Cervera J
    J Mol Biol; 2000 Jun; 299(4):979-91. PubMed ID: 10843852
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Analysis of the control of citrulline synthesis in isolated rat-liver mitochondria.
    Wanders RJ; Van Roermund CW; Meijer AJ
    Eur J Biochem; 1984 Jul; 142(2):247-54. PubMed ID: 6745275
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Reversible reaction of cyanate with a reactive sulfhydryl group at the glutamine binding site of carbamyl phosphate synthetase.
    Anderson PM; Carlson JD
    Biochemistry; 1975 Aug; 14(16):3688-94. PubMed ID: 240389
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Regulatory kinetics of wheat-germ aspartate transcarbamoylase. Adaptation of the concerted model to account for complex kinetic effects of uridine 5'-monophosphate.
    Yon RJ
    Biochem J; 1984 Jul; 221(2):281-7. PubMed ID: 6477473
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Evidence that the catalytic and regulatory functions of carbamylphosphate synthetase from Escherichia coli are not dependent on oligomer formation.
    Anderson PM
    Biochemistry; 1977 Feb; 16(4):583-6. PubMed ID: 189805
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Long-range allosteric transitions in carbamoyl phosphate synthetase.
    Thoden JB; Huang X; Kim J; Raushel FM; Holden HM
    Protein Sci; 2004 Sep; 13(9):2398-405. PubMed ID: 15322282
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Hyperthermophilic Carbamate Kinase Stability and Anabolic
    Hennessy JE; Latter MJ; Fazelinejad S; Philbrook A; Bartkus DM; Kim HK; Onagi H; Oakeshott JG; Scott C; Alissandratos A; Easton CJ
    Appl Environ Microbiol; 2018 Feb; 84(3):. PubMed ID: 29150502
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Regulation of arginine and pyrimidine biosynthesis in Pseudomonas putida.
    Condon S; Collins JK; O'donovan GA
    J Gen Microbiol; 1976 Feb; 92(2):375-83. PubMed ID: 176312
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Factors accelerating pyrimidine production in Deinococcus radiophilus.
    McPhail D; Cheung MK; Brown J; Shepherdson M
    Arch Microbiol; 2009 Jan; 191(1):73-82. PubMed ID: 18807014
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mechanism of mitochondrial carbamoyl-phosphate synthetase: synthesis and properties of active CO2, precursor of carbamoyl phosphate.
    Rubio V; Grisolia S
    Biochemistry; 1977 Jan; 16(2):321-9. PubMed ID: 13811
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Nucleotide ligands protect the inter-domain regions of the multifunctional polypeptide CAD against limited proteolysis, and also stabilize the thermolabile part-reactions of the carbamoyl-phosphate synthase II domains within the CAD polypeptide.
    Carrey EA
    Biochem J; 1986 Jun; 236(2):327-35. PubMed ID: 3638965
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Structural and regulatory mutations allowing utilization of citrulline or carbamoylaspartate as a source of carbamoylphosphate in Escherichia coli K-12.
    Legrain C; Stalon V; Glansdorff N; Gigot D; Piéard A; Crabeel M
    J Bacteriol; 1976 Oct; 128(1):39-48. PubMed ID: 789342
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ligand-induced isomerizations of Escherichia coli ornithine transcarbamoylase. An ultraviolet difference analysis.
    Miller AW; Kuo LC
    J Biol Chem; 1990 Sep; 265(25):15023-7. PubMed ID: 2203767
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.