These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 4572921)

  • 1. Visualization of freezing damage.
    Bank H; Mazur P
    J Cell Biol; 1973 Jun; 57(3):729-42. PubMed ID: 4572921
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of ice-seeding temperature and intracellular trehalose contents on survival of frozen Saccharomyces cerevisiae cells.
    Nakamura T; Takagi H; Shima J
    Cryobiology; 2009 Apr; 58(2):170-4. PubMed ID: 19126409
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced survival of yeast expressing an antifreeze gene analogue after freezing.
    McKown RL; Warren GJ
    Cryobiology; 1991 Oct; 28(5):474-82. PubMed ID: 1752135
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Character, distribution and biological implications of ice crystallization in cryopreserved rabbit ovarian tissue revealed by cryo-scanning electron microscopy.
    Gosden RG; Yin H; Bodine RJ; Morris GJ
    Hum Reprod; 2010 Feb; 25(2):470-8. PubMed ID: 19933523
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Visualization of freezing damage. II. Structural alterations during warming.
    Bank H
    Cryobiology; 1973 Jun; 10(2):157-70. PubMed ID: 4579298
    [No Abstract]   [Full Text] [Related]  

  • 6. Rapidly cooled human sperm: no evidence of intracellular ice formation.
    Morris GJ
    Hum Reprod; 2006 Aug; 21(8):2075-83. PubMed ID: 16613884
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stabilization of frozen Lactobacillus delbrueckii subsp. bulgaricus in glycerol suspensions: Freezing kinetics and storage temperature effects.
    Fonseca F; Marin M; Morris GJ
    Appl Environ Microbiol; 2006 Oct; 72(10):6474-82. PubMed ID: 17021195
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Raman scattering evidence of hydrohalite formation on frozen yeast cells.
    Okotrub KA; Surovtsev NV
    Cryobiology; 2013 Feb; 66(1):47-51. PubMed ID: 23165247
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intracellular ice formation in yeast cells vs. cooling rate: predictions from modeling vs. experimental observations by differential scanning calorimetry.
    Seki S; Kleinhans FW; Mazur P
    Cryobiology; 2009 Apr; 58(2):157-65. PubMed ID: 19118541
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rapidly cooled horse spermatozoa: loss of viability is due to osmotic imbalance during thawing, not intracellular ice formation.
    Morris GJ; Faszer K; Green JE; Draper D; Grout BW; Fonseca F
    Theriogenology; 2007 Sep; 68(5):804-12. PubMed ID: 17645937
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nucleation and growth of ice crystals inside cultured hepatocytes during freezing in the presence of dimethyl sulfoxide.
    Karlsson JO; Cravalho EG; Borel Rinkes IH; Tompkins RG; Yarmush ML; Toner M
    Biophys J; 1993 Dec; 65(6):2524-36. PubMed ID: 8312489
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Studies on rapidly frozen suspensions of yeast cells by differential thermal analysis and conductometry.
    MAZUR P
    Biophys J; 1963 Jul; 3(4):323-53. PubMed ID: 13934216
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantification of Intracellular Ice Formation and Recrystallization During Freeze-Thaw Cycles and Their Relationship with the Viability of Pig Iliac Endothelium Cells.
    Liu X; Zhao G; Shu Z; Niu D; Zhang Z; Zhou P; Cao Y; Gao D
    Biopreserv Biobank; 2016 Dec; 14(6):511-519. PubMed ID: 27532801
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intracellular freezing and survival in the freeze tolerant alpine cockroach Celatoblatta quinquemaculata.
    Worland MR; Wharton DA; Byars SG
    J Insect Physiol; 2004; 50(2-3):225-32. PubMed ID: 15019525
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure and function of frozen cells: freezing patterns and post-thaw survival.
    Nei T
    J Microsc; 1978 Mar; 112(2):197-204. PubMed ID: 349159
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Aquaporin-mediated improvement of freeze tolerance of Saccharomyces cerevisiae is restricted to rapid freezing conditions.
    Tanghe A; Van Dijck P; Colavizza D; Thevelein JM
    Appl Environ Microbiol; 2004 Jun; 70(6):3377-82. PubMed ID: 15184134
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polyvinylpyrrolidone (PVP) mitigates the damaging effects of intracellular ice formation in adult stem cells.
    Guha A; Devireddy R
    Ann Biomed Eng; 2010 May; 38(5):1826-35. PubMed ID: 20177781
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of controlled ice nucleation on primary drying stage and protein recovery in vials cooled in a modified freeze-dryer.
    Passot S; Tréléa IC; Marin M; Galan M; Morris GJ; Fonseca F
    J Biomech Eng; 2009 Jul; 131(7):074511. PubMed ID: 19640147
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultrastructure in frozen/etched saline solutions: on the internal cleansing of ice.
    Menger FM; Galloway AL; Chlebowski ME; Apkarian RP
    J Am Chem Soc; 2004 May; 126(19):5987-9. PubMed ID: 15137762
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct cell injury associated with eutectic crystallization during freezing.
    Han B; Bischof JC
    Cryobiology; 2004 Feb; 48(1):8-21. PubMed ID: 14969678
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.