These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 4573080)

  • 41. Transfer RNA as a cofactor coupling amino acid synthesis with that of protein.
    Wilcox M; Nirenberg M
    Proc Natl Acad Sci U S A; 1968 Sep; 61(1):229-36. PubMed ID: 4972364
    [No Abstract]   [Full Text] [Related]  

  • 42. Temperature control of initiation of protein synthesis in Escherichia coli.
    Friedman H; Lu P; Rich A
    J Mol Biol; 1971 Oct; 61(1):105-21. PubMed ID: 4947690
    [No Abstract]   [Full Text] [Related]  

  • 43. The effect of tRNA derivatives bound with natural or synthetic mRNA on the interaction of Escherichia coli ribosomes with colicin E3.
    Kaufmann Y; Zamir A
    Eur J Biochem; 1975 May; 53(2):599-603. PubMed ID: 1095372
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Inhibition of cell-free protein synthesis by hydrostatic pressure.
    Schwarz JR; Landau JV
    J Bacteriol; 1972 Dec; 112(3):1222-7. PubMed ID: 4565535
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Undermethylated transfer RNA does not support phage RNA-directed in vitro protein synthesis.
    Stulberg MP; Sutton M; Isham KR
    Biochim Biophys Acta; 1976 Jul; 435(3):251-7. PubMed ID: 779844
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Regulation of in vitro translation of bacteriophage f2 RNA.
    Lodish HF; Robertson HD
    Cold Spring Harb Symp Quant Biol; 1969; 34():655-73. PubMed ID: 4909522
    [No Abstract]   [Full Text] [Related]  

  • 47. Competitive interaction of Escherichia coli leucyl-transfer-ribonucleic acids with the enzyme-leucyladenylate complex.
    Kondo M
    Biochem J; 1971 Feb; 121(3):567-8. PubMed ID: 4940988
    [No Abstract]   [Full Text] [Related]  

  • 48. Demonstration of further differences between in vitro and in vivo synthesized MS2 coat protein.
    Lin JY; Fraenkel-Conrat H
    Biochemistry; 1967 Nov; 6(11):3402-7. PubMed ID: 4864143
    [No Abstract]   [Full Text] [Related]  

  • 49. Azaguanine inhibition of protein synthesis. 3. Site of action in HeLa cells.
    Zimmerman EF
    Biochim Biophys Acta; 1968 Apr; 157(2):378-91. PubMed ID: 4967763
    [No Abstract]   [Full Text] [Related]  

  • 50. Stimulation of phage ribonucleic acid-dependent incorporation of amino acids by 5 S ribonucleic acid.
    Kirtikar DM; Kaji A
    J Biol Chem; 1968 Oct; 243(20):5345-53. PubMed ID: 4883095
    [No Abstract]   [Full Text] [Related]  

  • 51. Comparison of the activities of extracts of Escherichia coli and Salmonella typhimurium in amino acid incorporation.
    Bassel BA; Curry ME
    J Bacteriol; 1973 Nov; 116(2):757-63. PubMed ID: 4583250
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Mechanism of action of negamycin in Escherichia coli K12. I. Inhibition of initiation of protein synthesis.
    Mizuno S; Nitta K; Umezawa H
    J Antibiot (Tokyo); 1970 Dec; 23(12):581-8. PubMed ID: 4950815
    [No Abstract]   [Full Text] [Related]  

  • 53. Translation of synthetic messenger RNA.
    Thach RE; Sundararajan TA; Dewey KF; Brown JC; Doty P
    Cold Spring Harb Symp Quant Biol; 1966; 31():85-97. PubMed ID: 4295326
    [No Abstract]   [Full Text] [Related]  

  • 54. Functional integrity of Escherichia coli 30-S ribosomes reconstituted from RNA and protein: in vitro synthesis of S-adenosylmethionine cleaving enzyme.
    Egberts E; Traub P; Herrlich P; Schweiger M
    Biochim Biophys Acta; 1972 Sep; 277(3):681-4. PubMed ID: 4560819
    [No Abstract]   [Full Text] [Related]  

  • 55. Structure and function of Escherichia coli ribosomes. II. Translational fidelity and efficiency in protein synthesis of a protein-deficient subribosomal particle.
    Traub P; Söll D; Nomura M
    J Mol Biol; 1968 Jun; 34(3):595-608. PubMed ID: 4938559
    [No Abstract]   [Full Text] [Related]  

  • 56. Hydrostatic pressure effects on protein synthesis.
    Hildebrand CE; Pollard EC
    Biophys J; 1972 Oct; 12(10):1235-50. PubMed ID: 4561529
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Requirement of granosine 5'-triphosphate for ribosomal binding of aminoacyl-SRNA.
    Lucas-Lenard J; Haenni AL
    Proc Natl Acad Sci U S A; 1968 Feb; 59(2):554-60. PubMed ID: 4870466
    [No Abstract]   [Full Text] [Related]  

  • 58. Dynamics of synthesis, translation, and degradation of trp operon messenger RNA in E. coli.
    Morse DE; Mosteller RD; Yanofsky C
    Cold Spring Harb Symp Quant Biol; 1969; 34():725-40. PubMed ID: 4909527
    [No Abstract]   [Full Text] [Related]  

  • 59. Protein synthesis directed by encephalomyocarditis virus RNA: properties of a transfer RNA-dependent system.
    Aviv H; Boime I; Leder P
    Proc Natl Acad Sci U S A; 1971 Sep; 68(9):2303-7. PubMed ID: 4332253
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Incorporation of 5-methyltryptophan into the protein of Escherichia coli.
    Ezekiel DH; Carlson N; Jenkins T
    Biochim Biophys Acta; 1973 Jul; 312(4):751-64. PubMed ID: 4582229
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.