These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 457335)

  • 1. Use of cyclopentyl ester protection for aspartic acid to reduce base catalyzed succinimide formation in solid-phase peptide synthesis.
    Blake J
    Int J Pept Protein Res; 1979 Apr; 13(4):418-25. PubMed ID: 457335
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Succinimide formation from aspartyl and asparaginyl peptides as a model for the spontaneous degradation of proteins.
    Stephenson RC; Clarke S
    J Biol Chem; 1989 Apr; 264(11):6164-70. PubMed ID: 2703484
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of an antibody that recognizes peptides containing D-β-aspartyl residues.
    Aki K; Fujii N; Saito T; Fujii N
    Mol Vis; 2012; 18():996-1003. PubMed ID: 22550393
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neighboring side chain effects on asparaginyl and aspartyl degradation: an ab initio study of the relationship between peptide conformation and backbone NH acidity.
    Radkiewicz JL; Zipse H; Clarke S; Houk KN
    J Am Chem Soc; 2001 Apr; 123(15):3499-506. PubMed ID: 11472122
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Problem of aspartimide formation in Fmoc-based solid-phase peptide synthesis using Dmab group to protect side chain of aspartic acid.
    Ruczyński J; Lewandowska B; Mucha P; Rekowski P
    J Pept Sci; 2008 Mar; 14(3):335-41. PubMed ID: 17975850
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Alpha- and beta- aspartyl peptide ester formation via aspartimide ring opening.
    Stathopoulos P; Papas S; Kostidis S; Tsikaris V
    J Pept Sci; 2005 Oct; 11(10):658-64. PubMed ID: 15884102
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanisms of aspartimide formation: the effects of protecting groups, acid, base, temperature and time.
    Tam JP; Riemen MW; Merrifield RB
    Pept Res; 1988; 1(1):6-18. PubMed ID: 2980781
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 1,4-diazepine-2,5-dione ring formation during solid phase synthesis of peptides containing aspartic acid beta-benzyl ester.
    Süli-Vargha H; Schlosser G; Ilas J
    J Pept Sci; 2007 Nov; 13(11):742-8. PubMed ID: 17853501
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Formation of aminosuccinyl peptides during acidolytic deprotection followed by their transformation to piperazine-2,5-dione derivatives in neutral media.
    Schön I; Kisfaludy L
    Int J Pept Protein Res; 1979; 14(5):485-94. PubMed ID: 43840
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Understanding the pathway and kinetics of aspartic acid isomerization in peptide mapping methods for monoclonal antibodies.
    Kuang J; Tao Y; Song Y; Chemmalil L; Mussa N; Ding J; Li ZJ
    Anal Bioanal Chem; 2021 Mar; 413(8):2113-2123. PubMed ID: 33543314
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Infrared analysis of peptide succinimide derivatives.
    Pistorius AM; Groenen PJ; De Grip WJ
    Int J Pept Protein Res; 1993 Dec; 42(6):570-7. PubMed ID: 8307688
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis of S-alkyl and C-terminal analogs of the Saccharomyces cerevisiae a-factor. Influence of temperature on the stability of Fmoc and OFm groups toward HF.
    Xue CB; Becker JM; Naider F
    Int J Pept Protein Res; 1991 Jun; 37(6):476-86. PubMed ID: 1917304
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of the activation energy barrier for succinimide formation from α- and β-aspartic acid residues obtained from density functional theory calculations.
    Nakayoshi T; Kato K; Fukuyoshi S; Takahashi O; Kurimoto E; Oda A
    Biochim Biophys Acta Proteins Proteom; 2018 Jul; 1866(7):759-766. PubMed ID: 29305913
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Trapping succinimides in aged polypeptides by chemical reduction.
    Carter DA; McFadden PN
    J Protein Chem; 1994 Jan; 13(1):89-96. PubMed ID: 8011075
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Determination of rate constants for β-linkage isomerization of three specific aspartyl residues in recombinant human αA-crystallin protein by reversed-phase HPLC.
    Sadakane Y; Fujii N; Nakagomi K
    J Chromatogr B Analyt Technol Biomed Life Sci; 2011 Nov; 879(29):3240-6. PubMed ID: 21470922
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preventing aspartimide formation in Fmoc SPPS of Asp-Gly containing peptides--practical aspects of new trialkylcarbinol based protecting groups.
    Behrendt R; Huber S; White P
    J Pept Sci; 2016 Feb; 22(2):92-7. PubMed ID: 26751703
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ethyl 2-cyano-2-(2-nitrobenzenesulfonyloxyimino)acetate (o-NosylOXY): a recyclable coupling reagent for racemization-free synthesis of peptide, amide, hydroxamate, and ester.
    Dev D; Palakurthy NB; Thalluri K; Chandra J; Mandal B
    J Org Chem; 2014 Jun; 79(12):5420-31. PubMed ID: 24849944
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 18O labeling method for identification and quantification of succinimide in proteins.
    Xiao G; Bondarenko PV; Jacob J; Chu GC; Chelius D
    Anal Chem; 2007 Apr; 79(7):2714-21. PubMed ID: 17313184
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Side reactions in peptide synthesis. II. Formation of succinimide derivatives from aspartyl residues.
    Bodanszky M; Natarajan S
    J Org Chem; 1975 Aug; 40(17):2495-9. PubMed ID: 1165511
    [No Abstract]   [Full Text] [Related]  

  • 20. Propensity for spontaneous succinimide formation from aspartyl and asparaginyl residues in cellular proteins.
    Clarke S
    Int J Pept Protein Res; 1987 Dec; 30(6):808-21. PubMed ID: 3440704
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.