These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 4573846)

  • 1. The extent of base pairing in 5 s RNA. Yeast 5 s RNA.
    Wong YP; Kearns DR; Reid BR; Shulman RG
    J Mol Biol; 1972 Dec; 72(3):741-9. PubMed ID: 4573846
    [No Abstract]   [Full Text] [Related]  

  • 2. Investigation of exchangeable protons and the extent of base pairings in yeast phenylalanine transfer RNA by high resolution nuclear magnetic resonance.
    Wong YP; Kearns DR; Reid BR; Shulman RG
    J Mol Biol; 1972 Dec; 72(3):725-40. PubMed ID: 4573845
    [No Abstract]   [Full Text] [Related]  

  • 3. Assignment of the low field proton nuclear magnetic resonance spectrum of yeast phenylalanine transfer RNA to specific base pairs.
    Lightfoot DR; Wong KL; Kearns DR; Reid BR; Shulman RG
    J Mol Biol; 1973 Jun; 78(1):71-89. PubMed ID: 4581296
    [No Abstract]   [Full Text] [Related]  

  • 4. Investigation of the secondary structure of Escherichia coli 5 S RNA by high-resolution nuclear magnetic resonance.
    Kearns DR; Wong YP
    J Mol Biol; 1974 Aug; 87(4):755-74. PubMed ID: 4610155
    [No Abstract]   [Full Text] [Related]  

  • 5. High resolution nuclear magnetic resonance study of base pairing in the native and denaturated conformers of transfer RNA Leu 3 .
    Wong YP; Kearns DR; Shulman RG; Yamane T; Chang S; Chirikjian JG; Fresco JR
    J Mol Biol; 1973 Mar; 74(3):403-6. PubMed ID: 4571235
    [No Abstract]   [Full Text] [Related]  

  • 6. Demonstration of the GC-rich common arm in yeast ribosomal 5.8S RNA via 500-MHz proton nuclear magnetic resonance and Overhauser enhancements.
    Lee KM; Marshall AG
    Biochemistry; 1986 Dec; 25(25):8245-52. PubMed ID: 3545290
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The nucleotide composition of labelled RNA synthesized by chick-embryo sensory ganglia during outgrowth of fibres in vitro.
    Rossi A; Toschi G
    Int J Neurosci; 1971 Nov; 2(4):233-5. PubMed ID: 5161314
    [No Abstract]   [Full Text] [Related]  

  • 8. Nuclear Overhauser effect study of yeast tRNAVal 1: evidence for uridine-pseudouridine base pairing.
    Schejter E; Roy S; Sánchez V; Redfield AG
    Nucleic Acids Res; 1982 Dec; 10(24):8297-305. PubMed ID: 6761651
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mapping adenines, guanines, and pyrimidines in RNA.
    Donis-Keller H; Maxam AM; Gilbert W
    Nucleic Acids Res; 1977 Aug; 4(8):2527-38. PubMed ID: 409999
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Studies of the thermal conversion of 28 S RNA of Galleria mellonella (L.) to an 18 S product.
    Ishikawa H; Newburgh RW
    J Mol Biol; 1972 Feb; 64(1):135-44. PubMed ID: 5015395
    [No Abstract]   [Full Text] [Related]  

  • 11. Transcription of Saccharomyces cerevisiae ribosomal DNA in vivo and in vitro.
    Cramer JH; Sebastian J; Rownd RH; Halvorson HO
    Proc Natl Acad Sci U S A; 1974 Jun; 71(6):2188-92. PubMed ID: 4601581
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adenylic acid-rich sequences in messenger RNA from yeast polysomes.
    Reed J; Wintersberger E
    FEBS Lett; 1973 Jun; 32(2):213-7. PubMed ID: 4582154
    [No Abstract]   [Full Text] [Related]  

  • 13. High resolution NMR study of the melting of yeast tRNA Phe.
    Hilbers CW; Shulman RG; Kim SH
    Biochem Biophys Res Commun; 1973 Dec; 55(3):953-60. PubMed ID: 4586623
    [No Abstract]   [Full Text] [Related]  

  • 14. Study of the phosphorescent bases of yeast phenylalanine transfer RNA with the aid of optical detection of magnetic resonance.
    Hoover RJ; Luk KF; Maki AH
    J Mol Biol; 1974 Oct; 89(2):363-78. PubMed ID: 4613861
    [No Abstract]   [Full Text] [Related]  

  • 15. The mitochondrial genome of wild-type yeast cells. 3. The pyrimidine tracts of mitochondrial DNA.
    Ehrlich SD; Thiery JP; Bernardi G
    J Mol Biol; 1972 Mar; 65(2):207-12. PubMed ID: 4557190
    [No Abstract]   [Full Text] [Related]  

  • 16. Feasibility of obtaining Raman spectra from nucleic acid constituents.
    Malt RA
    Biochim Biophys Acta; 1966 Jul; 120(3):461-5. PubMed ID: 5966549
    [No Abstract]   [Full Text] [Related]  

  • 17. Model for the secondary structure of the denaturated conformer of yeast tRNA3Leu.
    Kearns DR; Wong YP; Hawkins E; Chang SH
    Nature; 1974 Feb; 247(5442):541-3. PubMed ID: 4594436
    [No Abstract]   [Full Text] [Related]  

  • 18. [Primary structure of valine transfer RNA I of baker's yeast. Nucleotide content and oligonucleotides in ribonuclease hydrolysates].
    Venkstern TV; Li L; Krutilina AI; Mirzabekov AD; Aksel'rod VD; Baev AA
    Dokl Akad Nauk SSSR; 1967 Mar; 173(2):459-62. PubMed ID: 5623092
    [No Abstract]   [Full Text] [Related]  

  • 19. Oligonucleotide binding to the native and denatured conformers of yeast transfer RNA-3 Lea.
    Uhlenbeck OC; Chirikjian JG; Fresco JR
    J Mol Biol; 1974 Nov; 89(3):495-504. PubMed ID: 4613864
    [No Abstract]   [Full Text] [Related]  

  • 20. Helix-coil dynamics in RNA: the amino acid acceptor helix of Escherichia coli phenylalanine transfer RNA.
    Hurd RE; Reid BR
    J Mol Biol; 1980 Sep; 142(2):181-93. PubMed ID: 6160253
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.