These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

63 related articles for article (PubMed ID: 4574340)

  • 1. O studies on the oxidative and nonoxidative pentose phosphate pathways in wild-type and mutant Escherichia coli cells.
    Johnson R; Krasna AI; Rittenberg D
    Biochemistry; 1973 May; 12(10):1969-77. PubMed ID: 4574340
    [No Abstract]   [Full Text] [Related]  

  • 2. Pentose synthesis in Escherichia coli.
    Caprioli R; Rittenberg D
    Biochemistry; 1969 Aug; 8(8):3375-84. PubMed ID: 4309205
    [No Abstract]   [Full Text] [Related]  

  • 3. Role of phosphofructokinase in the utilization of glucose by Escherichia coli.
    Kornberg HL; Smith J
    Nature; 1970 Jul; 227(5253):44-6. PubMed ID: 4246367
    [No Abstract]   [Full Text] [Related]  

  • 4. On the utilization of D-fructose for pentose synthesis in Escherichia coli.
    Caprioli R; Rittenberg D
    Proc Natl Acad Sci U S A; 1968 Dec; 61(4):1422-7. PubMed ID: 4884688
    [No Abstract]   [Full Text] [Related]  

  • 5. The labeling of pentose phosphate from glucose-14C and estimation of the rates of transaldolase, transketolase, the contribution of the pentose cycle, and ribose phosphate synthesis.
    Katz J; Rognstad R
    Biochemistry; 1967 Jul; 6(7):2227-47. PubMed ID: 6049456
    [No Abstract]   [Full Text] [Related]  

  • 6. The pentose phosphate pathway of glucose metabolism. Enzyme profiles and transient and steady-state content of intermediates of alternative pathways of glucose metabolism in Krebs ascites cells.
    Gumaa KA; McLean P
    Biochem J; 1969 Dec; 115(5):1009-29. PubMed ID: 5360673
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of fructose uptake by glucose in Escherichia coli.
    Amaral D; Kornberg HL
    J Gen Microbiol; 1975 Sep; 90(1):157-68. PubMed ID: 1100775
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of phosphotransferase-mediated syntheses of fructose 1-phosphate and fructose 6-phosphate in the growth of Escherichia coli on fructose.
    Ferenci T; Kornberg HL
    Proc R Soc Lond B Biol Sci; 1974 Sep; 187(1087):105-19. PubMed ID: 4153999
    [No Abstract]   [Full Text] [Related]  

  • 9. Role of the phosphoenolpyruvate-dependent fructose phosphotransferase system in the utilization of mannose by Escherichia coli.
    Kornberg HL; Lambourne LT
    Proc Biol Sci; 1992 Oct; 250(1327):51-5. PubMed ID: 1361062
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Changes in pathways of pentose phosphate formation in relation to phosphoribosyl pyrophosphate synthesis in the developing rat kidney. Effects of glucose concentration and electron acceptors.
    Sochor M; Kunjara S; Greenbaum AL; McLean P
    J Dev Physiol; 1989 Sep; 12(3):135-43. PubMed ID: 2483165
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inhibition by fructose 1,6-bisphosphate of transaldolase from Escherichia coli.
    Ogawa T; Murakami K; Yoshino M
    FEMS Microbiol Lett; 2016 Sep; 363(17):. PubMed ID: 27481705
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitative aspects of the origin of pentose in Escherichia coli.
    Caprioli R; Rittenberg D
    Proc Natl Acad Sci U S A; 1968 Aug; 60(4):1379-82. PubMed ID: 4877270
    [No Abstract]   [Full Text] [Related]  

  • 13. NADPH-dependent pgi-gene knockout Escherichia coli metabolism producing shikimate on different carbon sources.
    Ahn J; Chung BK; Lee DY; Park M; Karimi IA; Jung JK; Lee H
    FEMS Microbiol Lett; 2011 Nov; 324(1):10-6. PubMed ID: 22092758
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oxidative phosphorylation in Escherichia coli K-12: the genetic and biochemical characterisations of a strain carrying a mutation in the uncB gene.
    Butlin JD; Cox GB; Gibson F
    Biochim Biophys Acta; 1973 Feb; 292(2):366-75. PubMed ID: 4145024
    [No Abstract]   [Full Text] [Related]  

  • 15. A mutant of Escherichia coli defective in phosphatidic acid synthesis.
    Kito M; Lubin M; Pizer LI
    Biochem Biophys Res Commun; 1969 Feb; 34(4):454-8. PubMed ID: 4887460
    [No Abstract]   [Full Text] [Related]  

  • 16. Pleiotropic deficiency of carbohydrate utilization in an adenyl cyclase deficient mutant of Escherichia coli.
    Perlman RL; Pastan I
    Biochem Biophys Res Commun; 1969 Sep; 37(1):151-7. PubMed ID: 4310317
    [No Abstract]   [Full Text] [Related]  

  • 17. Fructose-6-phosphate and AMP; effectors of proline biosynthesis in Escherichia coli.
    Baich A
    Biochem Biophys Res Commun; 1970 May; 39(3):544-50. PubMed ID: 4912201
    [No Abstract]   [Full Text] [Related]  

  • 18. Formation of ppGpp in a relaxed and stringent strain of Escherichia coli during diauxie lag.
    Harshman RB; Yamazaki H
    Biochemistry; 1971 Oct; 10(21):3980-2. PubMed ID: 4946193
    [No Abstract]   [Full Text] [Related]  

  • 19. Purine biosynthesis: enzymatic formation of ribosylamine-5-phosphate from ribose-5-phosphate and ammonia.
    Le Gal ML; Le Gal Y; Roche J; Hedegaard J
    Biochem Biophys Res Commun; 1967 Jun; 27(6):618-24. PubMed ID: 4964596
    [No Abstract]   [Full Text] [Related]  

  • 20. Regulation of the intracellular potassium concentration in Escherichia coli B 525.
    Zimmermann U; Pilwat G; Günther T
    Biochim Biophys Acta; 1973 Jul; 311(3):442-51. PubMed ID: 4580983
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 4.