These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 4575788)

  • 41. The binding of boronic acids to chymotrypsin.
    Rawn JD; Lienhard GE
    Biochemistry; 1974 Jul; 13(15):3124-30. PubMed ID: 4858346
    [No Abstract]   [Full Text] [Related]  

  • 42. Interaction between polypeptide chains within the catalytic subunit of aspartate transcarbamylase.
    Heyde E
    Biochim Biophys Acta; 1973 Feb; 293(2):351-8. PubMed ID: 4711812
    [No Abstract]   [Full Text] [Related]  

  • 43. Investigation into the association between serotonin and adenosine triphosphate in vitro by nuclear magnetic resonance and ultraviolet spectroscopy.
    Nogrady T; Hrdina PD; Ling GM
    Mol Pharmacol; 1972 Sep; 8(5):565-74. PubMed ID: 5083613
    [No Abstract]   [Full Text] [Related]  

  • 44. Ionization of amino acid residues involved in the catalytic mechanism of aspartate transcarbamoylase.
    Turnbull JL; Waldrop GL; Schachman HK
    Biochemistry; 1992 Jul; 31(28):6562-9. PubMed ID: 1633167
    [TBL] [Abstract][Full Text] [Related]  

  • 45. 35Cl nuclear magnetic resonance study of zinc and phosphate binding of E. coli alkaline phosphatase.
    Norne JE; Csopak H; Lindman B
    Arch Biochem Biophys; 1974 Jun; 162(2):552-9. PubMed ID: 4209891
    [No Abstract]   [Full Text] [Related]  

  • 46. Interaction of bovine carbonic anhydrase with acetate ions.
    Lanir A; Navon G
    Biochim Biophys Acta; 1974 Mar; 341(1):65-74. PubMed ID: 4208237
    [No Abstract]   [Full Text] [Related]  

  • 47. 1H nmr study on the binding of CMP inhibitors to RNase A. 3. Chemical exchange and relaxation effects.
    Gorenstein DG; Wyrwicz AM
    Biochem Biophys Res Commun; 1974 Jul; 59(2):718-24. PubMed ID: 4855440
    [No Abstract]   [Full Text] [Related]  

  • 48. A 70-amino acid zinc-binding polypeptide fragment from the regulatory chain of aspartate transcarbamoylase causes marked changes in the kinetic mechanism of the catalytic trimer.
    Zhou BB; Waldrop GL; Lum L; Schachman HK
    Protein Sci; 1994 Jun; 3(6):967-74. PubMed ID: 8069226
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A 70-amino acid zinc-binding polypeptide from the regulatory chain of aspartate transcarbamoylase forms a stable complex with the catalytic subunit leading to markedly altered enzyme activity.
    Markby DW; Zhou BB; Schachman HK
    Proc Natl Acad Sci U S A; 1991 Dec; 88(23):10568-72. PubMed ID: 1961722
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Arginine 54 in the active site of Escherichia coli aspartate transcarbamoylase is critical for catalysis: a site-specific mutagenesis, NMR, and X-ray crystallographic study.
    Stebbins JW; Robertson DE; Roberts MF; Stevens RC; Lipscomb WN; Kantrowitz ER
    Protein Sci; 1992 Nov; 1(11):1435-46. PubMed ID: 1303763
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The active center of aspartate transaminase. A fluorine-19 nuclear magnetic resonance study of the anion binding site.
    Cheng S; Martinez-Carrion M
    J Biol Chem; 1972 Oct; 247(20):6597-602. PubMed ID: 5076771
    [No Abstract]   [Full Text] [Related]  

  • 52. Interactions of Cibacron Blue F3GA and nucleotides with Escherichia coli aspartate carbamoyltransferase and its subunits.
    Issaly I; Poiret M; Tauc P; Thiry L; Hervé G
    Biochemistry; 1982 Mar; 21(7):1612-23. PubMed ID: 7044419
    [No Abstract]   [Full Text] [Related]  

  • 53. Three-dimensional structures at 5.5 A resolution and regulatory processes in aspartate transcarbamylase from E. coli.
    Lipscomb WN; Evans DR; Edwards BF; Warren SG; Pastra-Landis S; Wiley DC
    J Supramol Struct; 1974; 2(2-4):82-98. PubMed ID: 4612257
    [No Abstract]   [Full Text] [Related]  

  • 54. Magnetic resonance relaxation of 1 H and 17 O in aqueous solutions of concanavalin A.
    Meirovitch E; Kalb AJ
    Biochim Biophys Acta; 1973 Apr; 303(2):258-63. PubMed ID: 4710230
    [No Abstract]   [Full Text] [Related]  

  • 55. Ligand interactions at the active site of aspartate transcarbamoylase from Escherichia coli.
    Dennis PR; Krishna MV; Di Gregorio M; Chan WW
    Biochemistry; 1986 Apr; 25(7):1605-11. PubMed ID: 3518791
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Kinetics of the quaternary structure change of aspartate transcarbamylase triggered by succinate, a competitive inhibitor.
    Tsuruta H; Vachette P; Sano T; Moody MF; Amemiya Y; Wakabayashi K; Kihara H
    Biochemistry; 1994 Aug; 33(33):10007-12. PubMed ID: 8060968
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Nuclear magnetic resonance study of the complexes of manganese(II) and fully adenylated glutamine synthetase (Escherichia coli W). Frequency, temperature, and substrate dependence of water proton relaxation rates.
    Villafranca JJ; Wedler FC
    Biochemistry; 1974 Jul; 13(16):3286-91. PubMed ID: 4152181
    [No Abstract]   [Full Text] [Related]  

  • 58. Three-dimensional structure of carbamoyl phosphate and succinate bound to aspartate carbamoyltransferase.
    Gouaux JE; Lipscomb WN
    Proc Natl Acad Sci U S A; 1988 Jun; 85(12):4205-8. PubMed ID: 3380787
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The catalytic site of Escherichia coli aspartate transcarbamylase: interaction between histidine 134 and the carbonyl group of the substrate carbamyl phosphate.
    Xi XG; Van Vliet F; Ladjimi MM; Cunin R; Hervé G
    Biochemistry; 1990 Sep; 29(36):8491-8. PubMed ID: 2252907
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Nuclear magnetic resonance relaxation time studies on the manganese(II) ion complex with succinyl coenzyme A synthetase from Escherichia coli.
    Lam YF; Bridger WA; Kotowycz G
    Biochemistry; 1976 Oct; 15(21):4742-8. PubMed ID: 788782
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.