These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 4575964)

  • 1. Energy-dependent masking of substrate binding sites of the lactose permease of Escherichia coli.
    Benard-Bentaboulet M; Kepes A
    Biochim Biophys Acta; 1973 Apr; 307(1):197-211. PubMed ID: 4575964
    [No Abstract]   [Full Text] [Related]  

  • 2. Topological studies of lactose permease of Escherichia coli by protein sequence analysis.
    Bieseler B; Prinz H; Beyreuther K
    Ann N Y Acad Sci; 1985; 456():309-25. PubMed ID: 3911841
    [No Abstract]   [Full Text] [Related]  

  • 3. Dierect measurement of the binding of labeled sugars to the lactose permease M protein.
    Kennedy EP; Rumley MK; Armstrong JB
    J Biol Chem; 1974 Jan; 249(1):33-7. PubMed ID: 4588694
    [No Abstract]   [Full Text] [Related]  

  • 4. [Three classes of transport systems in bacteria].
    Kepes A
    Biochimie; 1973; 55(6):693-702. PubMed ID: 4589242
    [No Abstract]   [Full Text] [Related]  

  • 5. Ligand-induced conformational changes in the lactose permease of Escherichia coli: evidence for two binding sites.
    Wu J; Frillingos S; Voss J; Kaback HR
    Protein Sci; 1994 Dec; 3(12):2294-301. PubMed ID: 7756985
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Counter-transport mediated by the lactose permease of Escherichia coli.
    Bentaboulet M; Kepes A
    Biochim Biophys Acta; 1977 Nov; 471(1):125-34. PubMed ID: 21690
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of transmembrane domain III in the lactose permease of Escherichia coli.
    Sahin-Tóth M; Frillingos S; Bibi E; Gonzalez A; Kaback HR
    Protein Sci; 1994 Dec; 3(12):2302-10. PubMed ID: 7756986
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterisation in vivo of the reactive thiol groups of the lactose permease from Escherichia coli and a mutant; exposure, reactivity and the effects of substrate binding.
    Page MG; West IC
    Biochim Biophys Acta; 1986 Jun; 858(1):67-82. PubMed ID: 3518800
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Binding of monoclonal antibody 4B1 to homologs of the lactose permease of Escherichia coli.
    Sun J; Frillingos S; Kaback HR
    Protein Sci; 1997 Jul; 6(7):1503-10. PubMed ID: 9232651
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of helix VIII in the lactose permease of Escherichia coli: I. Cys-scanning mutagenesis.
    Frillingos S; Ujwal ML; Sun J; Kaback HR
    Protein Sci; 1997 Feb; 6(2):431-7. PubMed ID: 9041646
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transport of succinate in Escherichia coli. II. Characteristics of uptake and energy coupling with transport in membrane preparations.
    Rayman MK; Lo TC; Sanwal BD
    J Biol Chem; 1972 Oct; 247(19):6332-9. PubMed ID: 4568614
    [No Abstract]   [Full Text] [Related]  

  • 12. The membrane ATPase of Escherichia coli. I. Release into solution, allotopic properties and reconstitution of membrane-bound ATPase.
    Roisin MP; Kepes A
    Biochim Biophys Acta; 1973 May; 305(2):249-59. PubMed ID: 4354872
    [No Abstract]   [Full Text] [Related]  

  • 13. Site of energy coupling in the carrier mechanism for beta-galactoside transport.
    Wong JT; Pincock A; Bronskill PM
    Biochim Biophys Acta; 1971 Mar; 233(1):176-88. PubMed ID: 4931394
    [No Abstract]   [Full Text] [Related]  

  • 14. Probing the conformation of the lactose permease of Escherichia coli by in situ site-directed sulfhydryl modification.
    Frillingos S; Kaback HR
    Biochemistry; 1996 Apr; 35(13):3950-6. PubMed ID: 8672426
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A new spin-labelled substrate for -galactosidase and -galactoside permease.
    Struve WG; McConnell HM
    Biochem Biophys Res Commun; 1972 Dec; 49(6):1631-7. PubMed ID: 4565381
    [No Abstract]   [Full Text] [Related]  

  • 16. Mechanisms of active transport in isolated membrane vesicles. 2. The coupling of reduced phenazine methosulfate to the concentrative uptake of beta-galactosides and amino acids.
    Konings WN; Barnes EM; Kaback HR
    J Biol Chem; 1971 Oct; 246(19):5857-61. PubMed ID: 4331061
    [No Abstract]   [Full Text] [Related]  

  • 17. Characterization of Glu126 and Arg144, two residues that are indispensable for substrate binding in the lactose permease of Escherichia coli.
    Sahin-Tóth M; le Coutre J; Kharabi D; le Maire G; Lee JC; Kaback HR
    Biochemistry; 1999 Jan; 38(2):813-9. PubMed ID: 9888822
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation of lactose permease activity by the phosphoenolpyruvate:sugar phosphotransferase system: evidence for direct binding of the glucose-specific enzyme III to the lactose permease.
    Osumi T; Saier MH
    Proc Natl Acad Sci U S A; 1982 Mar; 79(5):1457-61. PubMed ID: 7041121
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanisms of active transport in isolated bacterial membrane vesicles. 8. The transport of amino acids by membranes prepared from Escherichia coli.
    Lombardi FJ; Kaback HR
    J Biol Chem; 1972 Dec; 247(24):7844-57. PubMed ID: 4344983
    [No Abstract]   [Full Text] [Related]  

  • 20. -Galactoside accumulation in a Mg 2+ -,Ca 2+ -activated ATPase deficient mutant of E.coli.
    Schairer HU; Haddock BA
    Biochem Biophys Res Commun; 1972 Aug; 48(3):544-51. PubMed ID: 4261724
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.