These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 4576006)

  • 41. Selected genes of T7 DNA associated with the Escherichia coli membrane following phage infection.
    Helland D; Nygaard AP
    FEBS Lett; 1975 Jan; 50(1):13-6. PubMed ID: 1089068
    [No Abstract]   [Full Text] [Related]  

  • 42. Effect of H1 protein on in vitro ribosomal RNA synthesis.
    Travers A; Cukier-Kahn R
    FEBS Lett; 1974 Jul; 43(1):86-8. PubMed ID: 4604398
    [No Abstract]   [Full Text] [Related]  

  • 43. Use of T7 RNA polymerase in an optimized Escherichia coli coupled in vitro transcription-translation system. Application in regulatory studies and expression of long transcription units.
    Köhrer C; Mayer C; Gröbner P; Piendl W
    Eur J Biochem; 1996 Feb; 236(1):234-9. PubMed ID: 8617270
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Effect of Escherichia coli DNA binding protein on the transcription of single-stranded phage M13 DNA by Escherichia coli RNA polymerase.
    Niyogi SK; Ratrie H; Datta AK
    Biochem Biophys Res Commun; 1977 Sep; 78(1):343-9. PubMed ID: 334166
    [No Abstract]   [Full Text] [Related]  

  • 45. Cluster of genes in Escherichia coli for ribosomal proteins, ribosomal RNA, and RNA polymerase subunits.
    Lindahl L; Jaskunas SR; Dennis PP; Nomura M
    Proc Natl Acad Sci U S A; 1975 Jul; 72(7):2743-7. PubMed ID: 1101264
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Repression of tryptophan operon RNA synthesis by trp repressor in an in vitro coupled transcription-translation system.
    Shimizu N; Shimizu Y; Fujimura FK; Hayashi M
    FEBS Lett; 1974 Mar; 40(1):80-3. PubMed ID: 4605051
    [No Abstract]   [Full Text] [Related]  

  • 47. The specificity of transcription in vitro of the tryptophan operon of Escherichia coli. II. The effect of Rho factor.
    Pannekoek H; Perbal B; Pouwels P
    Mol Gen Genet; 1974; 132(4):291-306. PubMed ID: 4214990
    [No Abstract]   [Full Text] [Related]  

  • 48. Escherichia coli RNA polymerase-rifampicin complexes bound at promoter sites block RNA chain elongation by Escherichia coli RNA polymerase and T7-specific RNA polymerase.
    Kassavetis GA; Kaya KM; Chamberlin MJ
    Biochemistry; 1978 Dec; 17(26):5798-804. PubMed ID: 365234
    [No Abstract]   [Full Text] [Related]  

  • 49. Tight binding of RNA polymerase to rDNA genes in E. coli.
    Udvardy A; Sumegi J; Venetianer P
    Nature; 1974 Jun; 249(457):548-50. PubMed ID: 4599763
    [No Abstract]   [Full Text] [Related]  

  • 50. Specificity of RNA chain initiation by bacteriophage T7-induced RNA polymerase.
    Bishayee S; Yudelevich A; Maitra U
    Biochem Biophys Res Commun; 1976 Jan; 68(2):626-33. PubMed ID: 766760
    [No Abstract]   [Full Text] [Related]  

  • 51. Selectivity of RNA chain initiation in vitro. 1. Analysis of RNA initiations by two-dimensional thin-layer chromatography of 5'-triphosphate-labeled oligonucleotides.
    Miller JS; Burgess RR
    Biochemistry; 1978 May; 17(11):2054-9. PubMed ID: 352390
    [TBL] [Abstract][Full Text] [Related]  

  • 52. In vitro transcription of E. coli tRNA genes.
    Grimberg JI; Daniel V
    Nucleic Acids Res; 1977 Nov; 4(11):3743-52. PubMed ID: 339203
    [TBL] [Abstract][Full Text] [Related]  

  • 53. [Stimulation of the transcription of the RNA polymerase genes of Escherichia coli (beta beta' subunits) in vitro as affected by rifampicin].
    Fedoseeva VB; Polonskiĭ IuS; Aleksandrov AA
    Mol Gen Mikrobiol Virusol; 1986 Sep; (9):36-43. PubMed ID: 2431305
    [No Abstract]   [Full Text] [Related]  

  • 54. Utilization of promoter and terminator sites on bacteriophage T7 DNA by RNA polymerases from a variety of bacterial orders.
    Wiggs JL; Bush JW; Chamberlin MJ
    Cell; 1979 Jan; 16(1):97-109. PubMed ID: 421272
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The relationships among RNA synthesis, RNA polymerase synthesis and guanosine tetraphosphate levels in Escherichia coli during nutritional shift-up.
    Boyle SM; Sells BH
    Arch Biochem Biophys; 1976 Jan; 172(1):215-23. PubMed ID: 766706
    [No Abstract]   [Full Text] [Related]  

  • 56. Transcription of brain chromatin by ribonucleic acid polymerases from brain nuclei and from Escherichia coli.
    Singh VK; Sung SC
    Biochem J; 1972 Dec; 130(4):1095-9. PubMed ID: 4571299
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Initiation sites for in vitro transcription of the tryptophan operon.
    Shimizu N; Shimizu Y; Hayashi M
    Biochemistry; 1974 Dec; 13(25):5235-42. PubMed ID: 4611480
    [No Abstract]   [Full Text] [Related]  

  • 58. Purification of RNA polymerase and transcription-termination factor Rho from Erwinia carotovora.
    Nwankwo DO; Guterman SK
    Eur J Biochem; 1985 Jan; 146(2):383-9. PubMed ID: 2578393
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Temperature and salt effects on the formation of preinitiation complexes between RNA polymerase and phage DNA.
    Escarmis C; Domingo E; Warner RC
    Biochim Biophys Acta; 1975 Aug; 402(2):261-9. PubMed ID: 1100115
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Regulation of ribonucleic acid synthesis in Escherichia coli B-r: an analysis of a shift-up. 1. Ribosomal RNA chain growth rates.
    Dennis PP; Bremer H
    J Mol Biol; 1973 Mar; 75(1):145-59. PubMed ID: 4576589
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.