BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 457606)

  • 1. Distribution of the phosphoenolpyruvate:glucose phosphotransferase system in fermentative bacteria.
    Romano AH; Trifone JD; Brustolon M
    J Bacteriol; 1979 Jul; 139(1):93-7. PubMed ID: 457606
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of an anaerobically induced phosphoenolpyruvate-dependent fructose-specific phosphotransferase system and evidence for the Embden-Meyerhof glycolytic pathway in the heterofermentative bacterium Lactobacillus brevis.
    Saier MH; Ye JJ; Klinke S; Nino E
    J Bacteriol; 1996 Jan; 178(1):314-6. PubMed ID: 8550437
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phosphoenolpyruvate:sugar phosphotransferase system in Ancalomicrobium adetum.
    Saier MH; Staley JT
    J Bacteriol; 1977 Aug; 131(2):716-8. PubMed ID: 328495
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Acetaldehyde: an intermediate in the formation of ethanol from glucose by lactic acid bacteria.
    Lees GJ
    J Dairy Res; 1976 Feb; 43(1):63-73. PubMed ID: 177470
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inactivation of the phosphoenolpyruvate-dependent phosphotransferase system in various species of bacteria by vinylglycolic acid.
    Snyder MA; Kaczorowski GJ; Barnes EM; Walsh C
    J Bacteriol; 1976 Jul; 127(1):671-3. PubMed ID: 931953
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phosphoenolpyruvate-dependent phosphorylation of hexoses by ruminal bacteria: evidence for the phosphotransferase transport system.
    Martin SA; Russell JB
    Appl Environ Microbiol; 1986 Dec; 52(6):1348-52. PubMed ID: 3789722
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nonstatistical 13C distribution during carbon transfer from glucose to ethanol during fermentation is determined by the catabolic pathway exploited.
    Bayle K; Akoka S; Remaud GS; Robins RJ
    J Biol Chem; 2015 Feb; 290(7):4118-28. PubMed ID: 25538251
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Different degradation pathways for glucose and fructose in Rhodopseudomonas capsulata.
    Conrad R; Schlegel HG
    Arch Microbiol; 1977 Feb; 112(1):39-48. PubMed ID: 139134
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Distribution of the phosphoenolpyruvate: glucose phosphotransferase system in bacteria.
    Romano AH; Eberhard SJ; Dingle SL; McDowell TD
    J Bacteriol; 1970 Nov; 104(2):808-13. PubMed ID: 5489437
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coexistence of the Entner-Doudoroff and Embden-Meyerhof-Parnas pathways enhances glucose consumption of ethanol-producing Corynebacterium glutamicum.
    Jojima T; Igari T; Noburyu R; Watanabe A; Suda M; Inui M
    Biotechnol Biofuels; 2021 Feb; 14(1):45. PubMed ID: 33593398
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The metabolism of several carboxylic acids by lactic acid bacteria.
    Radler F; Bröhl K
    Z Lebensm Unters Forsch; 1984 Sep; 179(3):228-31. PubMed ID: 6495871
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Energy metabolism in Capnocytophaga ochracea.
    Calmes R; Rambicure GW; Gorman W; Lillich TT
    Infect Immun; 1980 Aug; 29(2):551-60. PubMed ID: 7216425
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Expression of the xylulose 5-phosphate phosphoketolase gene, xpkA, from Lactobacillus pentosus MD363 is induced by sugars that are fermented via the phosphoketolase pathway and is repressed by glucose mediated by CcpA and the mannose phosphoenolpyruvate phosphotransferase system.
    Posthuma CC; Bader R; Engelmann R; Postma PW; Hengstenberg W; Pouwels PH
    Appl Environ Microbiol; 2002 Feb; 68(2):831-7. PubMed ID: 11823225
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Glucose transport in Streptococcus mutans: preparation of cytoplasmic membranes and characteristics of phosphotransferase activity.
    Schachtele CF
    J Dent Res; 1975; 54(2):330-8. PubMed ID: 1054344
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nicotinamide adenine dinucleotide-dependent and nicotinamide adenine dinucleotide-independent lactate dehydrogenases in homofermentative and heterofermentative lactic acid bacteria.
    Doelle HW
    J Bacteriol; 1971 Dec; 108(3):1284-9. PubMed ID: 4333320
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Expression of Phosphofructokinase Is Not Sufficient to Enable Embden-Meyerhof-Parnas Glycolysis in
    Felczak MM; Jacobson TB; Ong WK; Amador-Noguez D; TerAvest MA
    Front Microbiol; 2019; 10():2270. PubMed ID: 31611868
    [No Abstract]   [Full Text] [Related]  

  • 17. Bacterial phosphoenolpyruvate: sugar phosphotransferase systems: structural, functional, and evolutionary interrelationships.
    Saier MH
    Bacteriol Rev; 1977 Dec; 41(4):856-71. PubMed ID: 339892
    [No Abstract]   [Full Text] [Related]  

  • 18. Glucose and sucrose fermenting capacity of homofermentative lactic acid bacteria used as starters in fermented salads.
    Bonestroo MH; Kusters BJ; de Wit JC; Rombouts FM
    Int J Food Microbiol; 1992; 15(3-4):365-76. PubMed ID: 1419542
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of growth rate and glucose concentration on the activity of the phosphoenolpyruvate phosphotransferase system in Streptococcus mutans Ingbritt grown in continuous culture.
    Ellwood DC; Phipps PJ; Hamilton IR
    Infect Immun; 1979 Feb; 23(2):224-31. PubMed ID: 33901
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metabolic engineering of sugar catabolism in lactic acid bacteria.
    de Vos WM
    Antonie Van Leeuwenhoek; 1996 Oct; 70(2-4):223-42. PubMed ID: 8879408
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.