These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 4576407)

  • 1. Genetic determination of the constitutive biosynthesis of phospho- -glucosidase A in Escherichia coli K-12.
    Prasad I; Young B; Schaefler S
    J Bacteriol; 1973 Jun; 114(3):909-15. PubMed ID: 4576407
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulation of the beta-glucoside system in Escherchia coli K-12.
    Prasad I; Schaefler S
    J Bacteriol; 1974 Nov; 120(2):638-50. PubMed ID: 4616943
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phospho-beta-glucosidases and beta-glucoside permeases in Streptococcus, Bacillus, and Staphylococcus.
    Schaefler S; Malamy A; Green I
    J Bacteriol; 1969 Aug; 99(2):434-40. PubMed ID: 4897110
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inducible system for the utilization of beta-glucosides in Escherichia coli. II. Description of mutant types and genetic analysis.
    Schaefler S; Maas WK
    J Bacteriol; 1967 Jan; 93(1):264-72. PubMed ID: 5335893
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Taxonomic investigations on expressed and cryptic phospho-beta-glucosidases in Enterobacteriaceae.
    Schaefler S; Malamy A
    J Bacteriol; 1969 Aug; 99(2):422-33. PubMed ID: 4897109
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inducible system for the utilization of beta-glucosides in Escherichia coli. I. Active transport and utilization of beta-glucosides.
    Schaefler S
    J Bacteriol; 1967 Jan; 93(1):254-63. PubMed ID: 5335892
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cryptic operon for beta-glucoside metabolism in Escherichia coli K12: genetic evidence for a regulatory protein.
    Defez R; De Felice M
    Genetics; 1981 Jan; 97(1):11-25. PubMed ID: 6266910
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genetic analysis of the glutamate permease in Escherichia coli K-12.
    Marcus M; Halpern YS
    J Bacteriol; 1969 Mar; 97(3):1118-28. PubMed ID: 4887500
    [TBL] [Abstract][Full Text] [Related]  

  • 9. New beta-glucoside (bgl) genes in Bacillus subtilis: the bglP gene product has both transport and regulatory functions similar to those of BglF, its Escherichia coli homolog.
    Le Coq D; Lindner C; Krüger S; Steinmetz M; Stülke J
    J Bacteriol; 1995 Mar; 177(6):1527-35. PubMed ID: 7883710
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Beta-glucoside (bgl) operon of Escherichia coli K-12: nucleotide sequence, genetic organization, and possible evolutionary relationship to regulatory components of two Bacillus subtilis genes.
    Schnetz K; Toloczyki C; Rak B
    J Bacteriol; 1987 Jun; 169(6):2579-90. PubMed ID: 3034860
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interaction of maltose transport with the transport of glucose and galactosides.
    McKinstry G; Koch AL
    J Bacteriol; 1972 Jan; 109(1):455-8. PubMed ID: 4550675
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of melibiose mutants deficient in alpha-galactosidase and thiomethylgalactoside permease II in Escherichia coli K-12.
    Schmitt R
    J Bacteriol; 1968 Aug; 96(2):462-71. PubMed ID: 4877127
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Extent of host deletions associated with bacteriophage P2-mediated eduction.
    Sunshine MG; Kelly B
    J Bacteriol; 1971 Nov; 108(2):695-704. PubMed ID: 4942760
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nucleotide sequences of the arb genes, which control beta-glucoside utilization in Erwinia chrysanthemi: comparison with the Escherichia coli bgl operon and evidence for a new beta-glycohydrolase family including enzymes from eubacteria, archeabacteria, and humans.
    el Hassouni M; Henrissat B; Chippaux M; Barras F
    J Bacteriol; 1992 Feb; 174(3):765-77. PubMed ID: 1732212
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Positive and negative regulation of the bgl operon in Escherichia coli.
    Mahadevan S; Reynolds AE; Wright A
    J Bacteriol; 1987 Jun; 169(6):2570-8. PubMed ID: 3294798
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Esculin hydrolysis reaction by Escherichia coli.
    Miskin A; Edberg SC
    J Clin Microbiol; 1978 Mar; 7(3):251-4. PubMed ID: 418079
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of catalytic residues in the beta-glucoside permease of Escherichia coli by site-specific mutagenesis and demonstration of interdomain cross-reactivity between the beta-glucoside and glucose systems.
    Schnetz K; Sutrina SL; Saier MH; Rak B
    J Biol Chem; 1990 Aug; 265(23):13464-71. PubMed ID: 2199437
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Diverse pathways for salicin utilization in Shigella sonnei and Escherichia coli carrying an impaired bgl operon.
    Desai SK; Nandimath K; Mahadevan S
    Arch Microbiol; 2010 Oct; 192(10):821-33. PubMed ID: 20697693
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biochemical and genetic characterization of -glucosidase mutants in Saccharomyces lactis.
    Tingle M; Halvorson HO
    J Bacteriol; 1972 Apr; 110(1):196-201. PubMed ID: 5062915
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A fourth Escherichia coli gene system with the potential to evolve beta-glucoside utilization.
    Parker LL; Hall BG
    Genetics; 1988 Jul; 119(3):485-90. PubMed ID: 3042507
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.