These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 457663)

  • 21. Time course of alpha1-adrenergic and vasopressin actions on phosphorylase activation, calcium efflux, pyridine nucleotide reduction, and respiration in hepatocytes.
    Blackmore PF; Hughes BP; Charest R; Shuman EA; Exton JH
    J Biol Chem; 1983 Sep; 258(17):10488-94. PubMed ID: 6309807
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The cyclic AMP independent regulation of liver glycogenolysis.
    Keppens S
    Verh K Acad Geneeskd Belg; 1977; 39(4):202-24. PubMed ID: 204122
    [No Abstract]   [Full Text] [Related]  

  • 23. Effect of thyroid hormone on intracellular Ca2+ mobilization by noradrenaline and vasopressin in relation to glycogenolysis in rat liver.
    Storm H; van Hardeveld C
    Biochim Biophys Acta; 1985 Aug; 846(2):275-85. PubMed ID: 2992606
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The action of alpha-adrenergic agonists on plasma-membrane calcium fluxes in perfused rat liver.
    Reinhart PH; Taylor WM; Bygrave FL
    Biochem J; 1984 May; 220(1):43-50. PubMed ID: 6743272
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Hormonal regulation of the tricarboxylic acid cycle in the isolated perfused rat liver.
    Patel TB
    Eur J Biochem; 1986 Aug; 159(1):15-22. PubMed ID: 3091366
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Regulation of glycogen phosphorylase activity in isolated human hepatocytes.
    Keppens S; Vandekerckhove A; Moshage H; Yap SH; Aerts R; De Wulf H
    Hepatology; 1993 Apr; 17(4):610-4. PubMed ID: 8386694
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The Ca2+-mobilizing actions of vasopressin and angiotensin differ from those of the alpha-adrenergic agonist phenylephrine in the perfused rat liver.
    Altin JG; Bygrave FL
    Biochem J; 1985 Dec; 232(3):911-7. PubMed ID: 4091828
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mechanisms of hormonal regulation of liver metabolism.
    Exton JH; Blackmore PF; El-Refai MF; Dehaye JP; Strickland WG; Cherrington AD; Chan TM; Assimacopoulos-Jeannet FD; Chrisman TD
    Adv Cyclic Nucleotide Res; 1981; 14():491-505. PubMed ID: 6116389
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Relation between mitochondrial calcium transport and control of energy metabolism.
    Hansford RG
    Rev Physiol Biochem Pharmacol; 1985; 102():1-72. PubMed ID: 2863864
    [No Abstract]   [Full Text] [Related]  

  • 30. Influence of extracellular phosphate concentrations on the regulation of hepatic glucose output.
    Mine T; Kimura S; Koide Y; Ohsawa H; Ogata E
    Horm Metab Res; 1985 Sep; 17(9):438-42. PubMed ID: 3899890
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Role of calcium in the phenylephrine-induced activation of phosphorylase "A" in isolated liver cells.
    Saz JM; Gonzalez-Manchon C; Ayuso MS; Parrilla R
    Biochem Biophys Res Commun; 1989 Apr; 160(2):480-5. PubMed ID: 2719676
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Inhibitory effect on calcium channel blockers on alpha -adrenergic activation of glycogenolysis and calcium efflux in perfused rat liver.
    Kimura S; Koide Y; Tada R; Abe K; Ogata E
    Endocrinol Jpn; 1981 Feb; 28(1):69-78. PubMed ID: 7250070
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Blockade of hepatic alpha-adrenergic receptors and responses by chlorpromazine and trifluoperazine.
    Blackmore PF; El-Refai MF; Dehaye JP; Strickland WG; Hughes BP; Exton JH
    FEBS Lett; 1981 Jan; 123(2):245-8. PubMed ID: 6112163
    [No Abstract]   [Full Text] [Related]  

  • 34. Studies on alpha-adrenergic activation of hepatic glucose output.
    Chan TM; Exton JH
    J Biol Chem; 1978 Sep; 253(18):6393-400. PubMed ID: 28328
    [No Abstract]   [Full Text] [Related]  

  • 35. Rapid stimulation by vasopressin, oxytocin and angiotensin II of glycogen degradation in hepatocyte suspensions.
    Hems DA; Rodrigues LM; Whitton PD
    Biochem J; 1978 May; 172(2):311-7. PubMed ID: 666748
    [TBL] [Abstract][Full Text] [Related]  

  • 36. cAMP-independent stimulation of glycogen phosphorylase in newborn rat hepatocytes.
    Noguchi A; Jett PA; Gold AH
    Am J Physiol; 1985 May; 248(5 Pt 1):E560-6. PubMed ID: 2986465
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Alpha 1-Adrenergic stimulation of Ca2+ mobilization without phosphorylase activation in hepatocytes from phosphorylase b kinase-deficient gsd/gsd rats.
    Blackmore PF; Exton JH
    Biochem J; 1981 Aug; 198(2):379-83. PubMed ID: 6948557
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Ca2+ uptake stimulated by the synergistic action of glucagon and Ca2+-mobilizing agents in the perfused rat liver occurs through the activation of a unidirectional Ca2+ influx pathway.
    Altin JG; Bygrave FL
    Biochem Biophys Res Commun; 1987 Feb; 142(3):745-53. PubMed ID: 2950856
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Influence of thyroid status on hepatic alpha 1-adrenoreceptor responsiveness.
    Daza FJ; Parrilla R; Martín-Requero A
    Am J Physiol; 1997 Dec; 273(6):E1065-72. PubMed ID: 9435520
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Decreased alpha 1-adrenoceptor responsiveness and density in liver cells of thyroidectomized rats.
    Preiksaitis HG; Kan WH; Kunos G
    J Biol Chem; 1982 Apr; 257(8):4321-7. PubMed ID: 6279632
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.