These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
170 related articles for article (PubMed ID: 4577739)
21. Inactivation of T u factor-guanosine triphosphate recognition and ribosome-binding ability by terminal oxidation-reduction of yeast phenylalanine transfer ribonucleic acid. Ofengand J; Chen CM J Biol Chem; 1972 Apr; 247(7):2049-58. PubMed ID: 4335860 [No Abstract] [Full Text] [Related]
22. Accepting site for aminoacylation of tRNAphe from yeast. Sprinzl M; Cramer F Nat New Biol; 1973 Sep; 245(140):3-5. PubMed ID: 4580595 [No Abstract] [Full Text] [Related]
23. The catalytic mechanism of amino acid:tRNA ligases. Synergism and formation of the ternary enzyme-amino acid-ATP complex. Holler E; Hammer-Raber B; Hanke T; Bartmann P Biochemistry; 1975 Jun; 14(11):2496-503. PubMed ID: 166659 [TBL] [Abstract][Full Text] [Related]
24. Necessity of polyamines for maximum isoleucyl-tRNA formation in a rat liver cell-free system. Igarashi K; Takahashi K; Hirose S Biochem Biophys Res Commun; 1974 Sep; 60(1):234-40. PubMed ID: 4424262 [No Abstract] [Full Text] [Related]
25. The role of polyamines in the aminoacyl transfer ribonucleic acid synthetase reactions. Demonstration of the requirement for magnesium ion and a secondary stimulatory effect of spermine. Santi DV; Webster RW J Biol Chem; 1975 May; 250(10):3874-7. PubMed ID: 165187 [TBL] [Abstract][Full Text] [Related]
26. Isoleucyl-tRNA synthetase from bakers' yeast: variable discrimination between tRNAIle and tRNAVal and different pathways of cognate and noncognate aminoacylation under standard conditions, in the presence of pyrophosphatase, elongation factor Tu-GTP complex, and spermine. Freist W; Sternbach H Biochemistry; 1984 Nov; 23(24):5742-52. PubMed ID: 6151853 [TBL] [Abstract][Full Text] [Related]
27. Incorporation into polypeptide and charging on transfer ribonucleic acid of the amino acid analog 5',5',5'-trifluoroleucine by leucine auxotrophs of Escherichia coli. Fenster ED; Anker HS Biochemistry; 1969 Jan; 8(1):269-74. PubMed ID: 4887855 [No Abstract] [Full Text] [Related]
28. In vitro protein synthesis at elevated temperature by an extract of an extreme thermophile. Effects of polyamines on the polyuridylic acid-directed reaction. Ono-Iwashita Y; Oshima T; Imahori K Arch Biochem Biophys; 1975 Dec; 171(2):490-9. PubMed ID: 1200636 [No Abstract] [Full Text] [Related]
29. Increase in fidelity of rat liver Ile-tRNA formation by both spermine and the aminoacyl-tRNA synthetase complex. Kusama-Eguchi K; Irisawa M; Watanabe S; Watanabe K; Igarashi K Arch Biochem Biophys; 1991 Aug; 288(2):495-9. PubMed ID: 1898044 [TBL] [Abstract][Full Text] [Related]
30. Phenylalanyl-tRNA synthetase from yeast. Steady-state kinetic investigation of the reaction mechanism. Berther JM; Mayer P; Dutler H Eur J Biochem; 1974 Aug; 47(1):151-63. PubMed ID: 4373237 [No Abstract] [Full Text] [Related]
31. The effect of polyamines on the thermostability of a cell free protein synthesizing system of an extreme thermophile. Ohno-Iwashita Y; Oshima T; Imahori K Experientia Suppl; 1976; 26():333-45. PubMed ID: 939277 [No Abstract] [Full Text] [Related]
32. Aminoacyl transfer RNA formation. V. Effect of ethylenediaminetetraacetate on isoleucyl transfer RNA formation stimulated by either spermine or Mg2+. Takeda Y; Onishi T J Biol Chem; 1975 May; 250(10):3878-82. PubMed ID: 805133 [TBL] [Abstract][Full Text] [Related]
33. Aminoacyl transfer RNA formation. IV. Kinetic evidence of the concerted mechanism of isoleucyl-tRNA formation stimulated by spermine. Takeda Y; Matsuzaki K Biochem Biophys Res Commun; 1974 Aug; 59(4):1302-10. PubMed ID: 4606203 [No Abstract] [Full Text] [Related]
34. Aminoacyl transfer RNA formation. 3. Mechanism of aminoacylation stimulated by polyamines. Matsuzaki K; Takeda Y Biochim Biophys Acta; 1973 May; 308(3):339-51. PubMed ID: 4351152 [No Abstract] [Full Text] [Related]
35. Kinetics of homologous and heterologous aminoacylation with yeast phenylalanyl transfer ribonucleic acid synthetase. Roe B; Sirover M; Dudock B Biochemistry; 1973 Oct; 12(21):4146-54. PubMed ID: 4583318 [No Abstract] [Full Text] [Related]
36. Aminoacyl transfer RNA formation. Binding of cations to transfer RNA and its role in aminoacyl transfer RNA formation. Takeda Y; Ohnishi T; Ogiso Y J Biochem; 1976 Sep; 80(3):463-9. PubMed ID: 789364 [TBL] [Abstract][Full Text] [Related]
37. Position of aminoacylation of individual Escherichia coli and yeast tRNAs. Hecht SM; Chinualt AC Proc Natl Acad Sci U S A; 1976 Feb; 73(2):405-9. PubMed ID: 1108023 [TBL] [Abstract][Full Text] [Related]
38. The mechanism of aminoacylation of transfer ribonucleic acid. Reactivity of enzyme-bound isoleucyl adenylate. Lõvgren TN; Heinonen J; Loftfield RB J Biol Chem; 1975 May; 250(10):3854-60. PubMed ID: 1092679 [TBL] [Abstract][Full Text] [Related]
39. On the specificity of interactions between transfer ribonucleic acids and aminoacyl-tRNA synthetases. Pachmann U; Cronvall E; Rigler R; Hirsch R; Wintermeyer W; Zachau HG Eur J Biochem; 1973 Nov; 39(1):265-73. PubMed ID: 4589027 [No Abstract] [Full Text] [Related]
40. Polyamines and protein synthesis. IV. Stimulation of aminoacyl transfer RNA formation by polyamines. Takeda Y; Igarashi K Biochem Biophys Res Commun; 1969 Dec; 37(6):917-24. PubMed ID: 5361161 [No Abstract] [Full Text] [Related] [Previous] [Next] [New Search]