BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 457791)

  • 1. Inosine di- and triphosphate synthesis in erythrocytes and cell extracts.
    Vanderheiden BS
    J Cell Physiol; 1979 Jun; 99(3):287-301. PubMed ID: 457791
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hypoxanthine nucleotides synthesis in fresh and stored human erythrocytes.
    Zachara B; Klem J; Kopff M
    Acta Biol Med Ger; 1981; 40(4-5):683-9. PubMed ID: 7315115
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Activity of inosine triphosphate pyrophosphohydrolase in fresh and stored human erythrocytes.
    Zachara B; Kopff M
    Haematologia (Budap); 1981; 14(3):277-83. PubMed ID: 6120123
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of inosine, pyruvate, and inorganic phosphate on 2,3-diphosphoglycerate, adenine, and hypoxanthine nucleotide synthesis in outdated human erythrocytes.
    Zachara B
    J Lab Clin Med; 1975 Mar; 85(3):436-44. PubMed ID: 1117206
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of dipyridamole on adenine incorporation into hypoxanthine nucleotides of fresh red blood cells.
    Kopff M; Zakrzewska I; Klem J; Zachara B
    Biomed Biochim Acta; 1986; 45(7):945-8. PubMed ID: 3790106
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Incorporation of adenosine and adenine into hypoxanthine nucleotides of fresh red blood cells.
    Kopff M
    Blut; 1986 Oct; 53(4):347-50. PubMed ID: 3756359
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inhibition of utilization of hypoxanthine and guanine in cells treated with the carbocyclic analog of adenosine. Phosphates of carbocyclic nucleoside analogs as inhibitors of hypoxanthine (guanine) phosphoribosyltransferase.
    Bennett LL; Brockman RW; Rose LM; Allan PW; Shaddix SC; Shealy YF; Clayton JD
    Mol Pharmacol; 1985 Jun; 27(6):666-75. PubMed ID: 2987661
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Accumulation of inosine triphosphate in human erythrocytes as a function of ITP-pyrophosphohydrolase activity].
    Kopff M; Zachara B; Klem J; Zakrzewska I
    Acta Haematol Pol; 1983; 14(3-4):165-71. PubMed ID: 6147059
    [No Abstract]   [Full Text] [Related]  

  • 9. Purine metabolism in normal and high-ITP human erythrocytes. Attempts to evaluate the ability to store the cells.
    De Verdier CH; Niklasson F; Van Waeg G; Ericson A; Högman CH
    Biomed Biochim Acta; 1987; 46(2-3):S263-7. PubMed ID: 3036112
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Relationships between nucleoside triphosphate pyrophosphohydrolase activity and inosine triphosphate accumulation in human erythrocytes.
    Soder C; Henderson JF; Zombor G; McCoy EE; Verhoef V; Morris AJ
    Can J Biochem; 1976 Oct; 54(10):843-7. PubMed ID: 990987
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Factors affecting inosinate synthesis and inosine triphosphate accumulation in human erythrocytes.
    Henderson JF; Zombor G; Fraser JH; McCoy EE; Verhoef V; Morris AJ
    Can J Biochem; 1977 Apr; 55(4):359-64. PubMed ID: 15708
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of dipyridamole on adenosine incorporation into hypoxanthine nucleotides of fresh human red cells.
    Kopff M; Zakrzewska I; Klem J; Zachara B
    Haematologia (Budap); 1986; 19(2):89-94. PubMed ID: 3758842
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Purification and properties of human erythrocyte inosine triphosphate pyrophosphohydrolase.
    Vanderheiden BS
    J Cell Physiol; 1979 Jan; 98(1):41-7. PubMed ID: 33191
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preservation of red blood cells with purines and nucleosides. II. Uptake and utilization of purines and nucleosides by stored red blood cells.
    Strauss D; de Verdier CH
    Folia Haematol Int Mag Klin Morphol Blutforsch; 1980; 107(3):417-33. PubMed ID: 6159280
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Purine metabolism in normal and ITP-pyrophosphohydrolase-deficient human erythrocytes.
    van Waeg G; Niklasson F; Ericson A; de Verdier CH
    Clin Chim Acta; 1988 Feb; 171(2-3):279-92. PubMed ID: 2836113
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Individual variation in inosine triphosphate accumulation in human erythrocytes.
    Fraser JH; Meyers H; Henderson JF; Brox LW; McCoy EE
    Clin Biochem; 1975 Dec; 8(6):353-64. PubMed ID: 1204209
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of dipyridamole on inosine triphosphate pyrophosphohydrolase activity and inosine triphosphate content in fresh human erythrocytes incubated with adenosine.
    Kopff M; Klem J; Zakrzewska I; Strzelczyk M
    Acta Biochim Pol; 1990; 37(2):227-32. PubMed ID: 1963521
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adenosine as a source for hypoxanthine nucleotides synthesis in human erythrocytes. The effect of dipyridamole.
    Zachara B
    Vox Sang; 1975; 28(6):. PubMed ID: 1146272
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of ITPA polymorphisms on the enzyme kinetic properties of human erythrocyte inosine triphosphatase toward its substrates ITP and 6-Thio-ITP.
    Bakker JA; Lindhout M; Habets DD; van den Wijngaard A; Paulussen AD; Bierau J
    Nucleosides Nucleotides Nucleic Acids; 2011 Nov; 30(11):839-49. PubMed ID: 22060550
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Catabolism of adenine nucleotides in rabbit blood cells.
    Rapoport I; Drung I; Rapoport SM
    Biomed Biochim Acta; 1990; 49(1):11-6. PubMed ID: 2360900
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.