These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 4578)

  • 41. Sodium and potassium requirements for active transport of glutamate by Escherichia coli K-12.
    Halpern YS; Barash H; Dover S; Druck K
    J Bacteriol; 1973 Apr; 114(1):53-8. PubMed ID: 4572725
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Valinomycin-induced cation transport in vesicles does not reflect the activity of K+ transport systems in Escherichia coli.
    Altendorf K; Epstein W; Löhmann A
    J Bacteriol; 1986 Apr; 166(1):334-7. PubMed ID: 3514580
    [TBL] [Abstract][Full Text] [Related]  

  • 43. [Systems of H+-K+-exchange in E. coli. Interplay with ATPase complex F1.F0].
    Martirosov SM; Trchunian AA
    Biofizika; 1981; 26(6):1033-6. PubMed ID: 6459129
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The implication of YggT of Escherichia coli in osmotic regulation.
    Ito T; Uozumi N; Nakamura T; Takayama S; Matsuda N; Aiba H; Hemmi H; Yoshimura T
    Biosci Biotechnol Biochem; 2009 Dec; 73(12):2698-704. PubMed ID: 19966467
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Kup-mediated Cs
    Tanudjaja E; Hoshi N; Su YH; Hamamoto S; Uozumi N
    Sci Rep; 2017 May; 7(1):2122. PubMed ID: 28522840
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Interconversion of components of the bacterial proton motive force by electrogenic potassium transport.
    Bakker EP; Mangerich WE
    J Bacteriol; 1981 Sep; 147(3):820-6. PubMed ID: 6268609
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Identification of the structural proteins of an ATP-driven potassium transport system in Escherichia coli.
    Laimins LA; Rhoads DB; Altendorf K; Epstein W
    Proc Natl Acad Sci U S A; 1978 Jul; 75(7):3216-9. PubMed ID: 356049
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Cation transport in Escherichia coli. VII. Potassium requirement for phosphate uptake.
    Weiden PL; Epstein W; Schultz SG
    J Gen Physiol; 1967 Jul; 50(6):1641-61. PubMed ID: 5340610
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Cation transport in Escherichia coli. VI. K exchange.
    Epstein W; Schultz SG
    J Gen Physiol; 1966 Jan; 49(3):469-81. PubMed ID: 5328217
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Requirement of a large K+-uptake capacity and of extracytoplasmic protease activity for protamine resistance of Escherichia coli.
    Stumpe S; Bakker EP
    Arch Microbiol; 1997; 167(2-3):126-36. PubMed ID: 9133319
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Cation/proton antiport systems in Escherichia coli. Absence of potassium/proton antiporter activity in a pH-sensitive mutant.
    Plack RH; Rosen BP
    J Biol Chem; 1980 May; 255(9):3824-5. PubMed ID: 6989828
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Osmotic control of kdp operon expression in Escherichia coli.
    Laimins LA; Rhoads DB; Epstein W
    Proc Natl Acad Sci U S A; 1981 Jan; 78(1):464-8. PubMed ID: 6787588
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Energetic consequences of two mutations in Escherichia coli K+ uptake systems for growth under potassium-limited conditions in the chemostat.
    Mulder MM; van der Gulden HM; Postma PW; van Dam K
    Biochim Biophys Acta; 1988 Mar; 933(1):65-9. PubMed ID: 3280029
    [TBL] [Abstract][Full Text] [Related]  

  • 54. [Potassium transport in Escherichia coli B. II. Dependence of the intracellular steady-state potassium concentration upon the extracellular potassium and sodium concentrations in E. coli B 525].
    Pilwat G; Zimmermann U
    Z Naturforsch B Anorg Chem Org Chem Biochem Biophys Biol; 1972 Jan; 27(1):62-7. PubMed ID: 4401900
    [No Abstract]   [Full Text] [Related]  

  • 55. Net uptake of potassium in Neurospora. Exchange for sodium and hydrogen ions.
    Slayman CL; Slayman CW
    J Gen Physiol; 1968 Sep; 52(3):424-43. PubMed ID: 5673302
    [TBL] [Abstract][Full Text] [Related]  

  • 56. [Effect of temperature on H+-K+ exchange in Escherichia coli bacteria during their anaerobic growth].
    Vardanian V; Trchunian A
    Biofizika; 1998; 43(6):1026-9. PubMed ID: 10079919
    [TBL] [Abstract][Full Text] [Related]  

  • 57. [H+-K+-exchange and formation of H2 in E. coli mutants with defects in the H+-ATPase complex and potassium transport].
    Bagramian KA; Trchunian AA
    Biofizika; 1993; 38(4):678-83. PubMed ID: 8364070
    [TBL] [Abstract][Full Text] [Related]  

  • 58. [Biphasic energy-dependent potassium ion absorption by Escherichia coli cells].
    Durgar'ian SS; Martirosov SM
    Biofizika; 1980; 25(4):654-7. PubMed ID: 6998505
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Energetic consequences of multiple K+ uptake systems in Escherichia coli.
    Mulder MM; Teixeira de Mattos MJ; Postma PW; van Dam K
    Biochim Biophys Acta; 1986 Sep; 851(2):223-8. PubMed ID: 3527265
    [TBL] [Abstract][Full Text] [Related]  

  • 60. [Role of putrescine in the antiporter mechanism of potassium transport in Escherichia coli and its role in the regulation of intracellular pH].
    Tkacheno AG; Chudinov AA
    Mikrobiologiia; 1993; 62(4):654-62. PubMed ID: 8277909
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.